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Abstract This study aims to numerically show the improvement in the strong and weak convergence
of multilevel Monte Carlo method using the order 1.5 Taylor strong scheme. The multilevel Monte Carlo
method, using the scheme, is tested for pricing eight options based on a geometric Brownian motion. The
options are European vanilla, Asian, Lookback, Digital, Power, Rainbow, Cliquet, and Exchange option. In
addition, the multilevel Monte Carlo method using the Milstein scheme is tested for pricing four Exotic op-
tions (Power, Rainbow, Cliquet, and Exchange) based on the geometric Brownian motion, and the multilevel
Monte Carlo method using the Euler scheme is tested for European option based on a well-known stochastic
volatility model. The model is the SABR model. Numerical results demonstrate that the multilevel Monte
Carlo method, using the order 1.5 Taylor strong scheme, attains computational complexity reduction of
7-99.9% for the required five different accuracies, compared with other Monte Carlo methods. They also
suggest that the strong and weak convergence of the multilevel Monte Carlo method using the order 1.5
Taylor scheme is the fastest, and that the multilevel Monte Carlo method has much better performance
than the standard Monte Carlo method without depending on discretization schemes and models.

Keywords: Monte Carlo, multilevel Monte Carlo, strong Taylor scheme, computational
complexity reduction, option pricing

1. Introduction

The Monte Carlo simulation is a useful and powerful numerical tool. It is popular in compu-
tational finance for financial derivatives pricing; however, its computational complexity may
become too large for attaining the required accuracy. The Multilevel Monte Carlo (MLMC)
method was proposed by Giles[3] to reduce this computational complexity.
This method has been actively studied. For example, representative variance reduction
methods were applied in the MLMC method. (e.g., Antithetic variates method: see Giles
and Szpruch[6] and Giles and Szpruch[7], Control variates method: see Nobile and Tesei[13],
and Importance Sampling method: see Kebaier and Lelong[11]). In addition, the Quasi
Monte Carlo method was also studied under the MLMC framework (see Giles andWaterhouse[4]
and Dick, Kuo, Gla and Schwab[1]).

Let {St}t be a stochastic process driven by a stochastic differential equation (SDE) given
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by

dSt = µ (St, t) dt+ σ (St, t) dWt, 0 ≤ t < T, (1.1)

where {Wt}t is Brownian motion process. The first term on the right-hand-side of (1.1)is
deterministic(real-valued) and the second is diffusion(real-valued). Especially, in the context
of option pricing, they are often called drift term and volatility term, respectively. T is time
to option maturity. We want to calculate E [P (ST )],which is the expectation of discounted
scalar payoff function value P (ST ) for option pricing where P has a uniform Lipschitz
bound; that is, there exists a constant c such that | P (U) − P (V ) |≤ c ∥ U − V ∥ for
all U, V . To compute E [P (ST )], we need to discretize {St}t. If we divide a time interval
[0, T ] into D ∈ N subintervals [0 = t0 < t1 < t2 < · · · < tn < · · · < tD = T ]by setting a time
step interval ∆t ≡ tn − tn−1 = T/D for n = 1, 2, . . . , D, the corresponding Euler scheme
discretization of {St}t with ∆t is given by

Ŝtn+1 − Ŝtn = µ
(
Ŝtn , tn

)
∆t+ σ

(
Ŝtn , tn

)
∆Wtn , n = 0, 1, . . . , D − 1. (1.2)

where ∆Wtn is a Brownian increment. We can compute Ŷ as E [P (ST )]

Ŷ = N−1

N∑
i=1

P
(
Ŝ
(i)
T

)
,

where N is the number of simulation paths. This is a standard Monte Carlo (SMC) method

and Ŷ is the SMC estimator. Set D = ML. Let P̂ℓ, ℓ = 0, 1, . . . , L denote the approximation
of P (ST ) on level ℓ; P̂ℓ is the discretized version of P (ST )with a time step interval hℓ =

T/M ℓ. Under the MLMC framework, the expected value E
[
P̂L

]
on the finest level L can

be uniquely constructed by

E[P̂L] = E[P̂0] +
L∑

ℓ=1

E[P̂ℓ − P̂ℓ−1] (1.3)

Let Ŷ0 denote the estimator of E [P0] using N0 simulation paths and let Ŷℓ, ℓ = 1, 2, . . . , L

denote the estimators of E
[
P̂ℓ − P̂ℓ−1

]
, ℓ = 1, 2, . . . , L using Nℓ simulation paths. Then,

the MLMC estimator is constructed by

Ŷ =
L∑

ℓ=0

Ŷℓ,

where

Ŷℓ =

{
N−1

0

∑N0

i=1 P̂
i
0, (ℓ = 0),

N−1
ℓ

∑Nℓ

i=1

(
P̂ i
ℓ − P̂ i

ℓ−1

)
, (0 < ℓ ≤ L).

Thus, we can consider the MLMC method as a Monte Carlo framework using an Euler
scheme for pricing European style options that have Lipschitz payoff. However, Giles[2]
reported that the MLMC method using the Euler scheme has numerically good perfor-
mance for not only Lipschitz payoffs but also non Lipschitz payoffs. Giles[3] tested Eu-
ropean vanilla options pricing under a scalar SDE and Heston model, and three Exotic
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options(Asian, Lookback, and Digital options) pricing under a scalar SDE by the MLMC
method using the Euler scheme. Furthermore, Giles, Higham, and Mao [5] mathematically
analyzed non-Lipschitz payoffs based on the assumption of a global Lipschitz bounds that
drift and diffusion coefficients of (1.1) satisfy, and reported that the MLMC using the Eu-
ler scheme can be mathematically justified for non-globally Lipschitz payoffs. In addition,
the Milstein scheme, which is a higher order scheme compared to the Euler scheme (see
Kloeden and Platen[12]), was applied to the MLMC method (see Giles[2], Giles, Debrabant,
and Rößler[8]). Giles, Debrabant, and Rößler[8] mathematically analyzed the efficiency of
the MLMC method using the Milstein scheme for pricing vanilla options and four exotic
options (Asian, Lookback, Digital, and Barrier options) under scalar SDEs. Giles[2] offers
numerical results of the MLMC method using the Milstein scheme for pricing four exotic
options under a scalar SDE; Giles[2] reported that the MLMC method using the Milstein
scheme is more efficient than the SMC method in computational cost reduction and that it
improves multilevel convergence. There still is a higher order convergence scheme known as
the order 1.5 Taylor strong scheme (see Kloeden and Platen [12]). However, there has been
no study that tried to test the MLMC method using the order 1.5 Taylor strong scheme in
our recognition. One direction of study is to test the numerical performance of the MLMC
method using the order 1.5 Taylor strong scheme and another is a theoretical analysis of
the method. In this study, we concentrate on the former. Note that in the MLMC method
using the Milstein scheme, the Milstein scheme version of the former was researched by
Giles[2] and the Milstein scheme version of the latter was studied by Giles, Debrabant, and
Rößler[8]. In addition, other well-known exotic options and a very well-known stochastic
volatility model have not been tested by the MLMC method using the Euler and the Mil-
stein scheme, such as Power options, Rainbow options, Cliquet options, Exchange options,
and the SABR model, which is used in many financial institutions. Such options and the
SABR model should be tested under the MLMC framework.

This paper is organized as follows. In Section 2, we introduce the complexity theorem
of the MLMC method of Giles [2]. Next, we introduce the Milstein scheme and the order
1.5 Taylor strong scheme. We then summarize the calculation of eight types of options
payoff. Furthermore, we summarize the numerical results of the MLMC method using the
Euler and the Milstein scheme in previous studies in the order of variance convergence of Yℓ.
In Section 3, we demonstrate the numerical performance of the MLMC method using the
order 1.5 Taylor strong scheme for eight different options pricing and using the Euler scheme
based on the SABR model in computational complexity reduction and order of convergence.
Finally, we summarize the numerical results in this paper and discuss a possible direction
of future research.

2. The Complexity Theorem of Multilevel Monte Carlo method and Numerical
Discretization Schemes of SDE

2.1. The Complexity Theorem

As noted in Section 1, the SMC method uses only one type of time step interval ∆t to
generate simulation paths; however, the MLMC method uses multiple types of time step
intervals hℓ = T/M ℓ, 0 ≤ ℓ ≤ L to generate simulation paths. Then the MLMC estimatorŶ
is estimated by paths generated by time steps hℓ, 0 ≤ ℓ ≤ L. The following theorem of the
MLMC method was proven by Giles[3]. The theorem gives a bound of computational cost

for the MLMC estimator Ŷ to attain the required accuracy.
Theorem 2.1 (Giles[3]). Let P denote a function of the solution of SDE (1.1) for a given
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Brownian path W (t), and, let P̂ℓ denote the corresponding level ℓ of numerical approximation
using a numerical discretization with time step hℓ = M−ℓT .

If there exist independent estimators Ŷℓ based on Nℓ Monte Carlo samples, and positive
constants α ≥ 1

2
, β, γ, c1, c2, c3 such that

i) |E[P̂ℓ − P ]| ≤ c1h
α
ℓ ,

ii) E[Ŷℓ] =

{
E[P̂0], ℓ = 0,

E[P̂ℓ − P̂ℓ−1], ℓ > 0,

iii) V [Ŷℓ] ≤ c2Nℓ
−1hβ

ℓ ,

iv) Cℓ, the computational complexity of Ŷℓ, is bounded by

Cℓ ≤ c3Nℓh
−1
ℓ ,

then, there exists a positive constant c4 such that for any ϵ < e−1 there are values L and Nℓ

for which the multilevel estimator

Ŷ =
L∑

ℓ=0

Ŷℓ,

has a mean-square-error with bound

MSE ≡ E

[(
Ŷ − E[P ]

)2]
< ϵ2

with a computational complexity C with bound

C ≤


c4ϵ

−2, β > 1,
c4ϵ

−2(log ϵ)2, β = 1,
c4ϵ

−2−(γ−β)/α, 0 < β < 1.

Proof. See Giles [3].

Note that the SMC method requires the computational complexity O (ϵ−3) to make the

MSE O (ϵ2). The complexity theorem claims that the MLMC estimator Ŷ can achieve the
required accuracy, MSE < ϵ2, with less computational complexity than the SMC method.
In addition, note that the MSE can be represented as follows.

MSE = E[(Ŷ − E[P ])2]

= E[(Ŷ − E[Ŷ ])2] + (E[Ŷ ]− E[P ])2 (2.1)

where the first term on the right-hand side in (2.1), E[(Ŷ − E[Ŷ ])2], is the variance of the

estimator and the second term, (E[Ŷ ] − E [P ])2, is the square of its bias due to discrete
approximation. The MLMC method reduces the first term and the variance reduction effect
leads to reduction in computational complexity.

2.2. Two Higher Order Discretization Schemes: The Milstein scheme and the
Order 1.5 Taylor Strong scheme

Let at ≡ µ
(
Ŝt, t

)
and bt ≡ σ

(
Ŝt, t

)
for all 0 < t < T . The Milstein discretization of SDE

(1.1) is given by

Ŝtn+1 − Ŝtn = atn∆t+ btn∆Wtn +
1

2
b′tnbtn(∆W 2

tn −∆t),

n = 0, 1, . . . , D − 1 (2.2)
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where b′tn = ∂btn/∂Stn . The Milstein scheme increases the approximation accuracy of the
SDE by adding a second-order term to the Euler scheme in (1.2). The strong and weak orders
of convergence in the Euler scheme are equal to 0.5 and 1, respectively; however, both strong
and weak orders of convergence of the Milstein scheme are equal to 1. Giles [2] numerically
tests the MLMC method using a Milstein scheme. In addition, Giles, Debrabant, and
Rößler [8] mathematically analyze the method in the variance of the multilevel estimator.
The latter paper assumes that the drift function and the volatility function of (1.1) satisfy
certain standard conditions that are uniform Lipschitz conditions, a linear growth bound,
and an additional Lipschitz condition (see section 2.1 in Giles, Debrabant, and Rößler [8]).
Our interest is the numerical performance of the MLMC method using the order 1.5 Taylor
strong scheme. However, in a mathematical analysis of MLMC method using the order 1.5
Taylor strong scheme we should discuss theoretical analysis on the basis of Theorem 10.6.3
in Kloeden and Platon [12], as it gives the conditions under which the order 1.5 Taylor
strong scheme actually attains the order 1.5 of strong convergence. The order 1.5 Taylor
strong scheme increases accuracy by adding more terms to the Milstein scheme (2.2). Thus,
order 1.5 Taylor discretization of SDE (1.1) is given by

Ŝtn+1 − Ŝtn =atn∆t+ btn∆Wtn +
1

2
b′tnbtn(∆W 2

tn −∆t)+

1

2
atna

′
tn∆t2 + atnb

′
tn∆t∆Wtn+

1

2
btn(b

′
tn)

2(
1

3
∆W 2

tn −∆t)∆Wtn , n = 0, 1, . . . , D − 1 (2.3)

where a′tn = ∂atn/∂Stn and b′tn = ∂btn/∂Stn .

2.3. Numerical Results in Previous Works using Euler and Milstein Schemes

If level ℓ > 0 is fine level, level ℓ − 1 is coarse level. We denote P̂ f
ℓ ≡ P̂ℓ and P̂ c

ℓ−1 ≡ P̂ℓ−1.

If level ℓ is equal to 0, level ℓ − 1 does not exist. We denote P̂ f
ℓ ≡ P̂ℓ. If level ℓ + 1 is fine

level, level ℓ is coarse level. We denote P̂ f
ℓ+1 ≡ P̂ℓ+1 and P̂ c

ℓ ≡ P̂ℓ. Giles[2] explained that
the following equation is required to secure (1.3):

E[P̂ f
ℓ ] = E[P̂ c

ℓ ], 0 ≤ ℓ ≤ L− 1. (2.4)

Numerical results in Giles [2],[3] in Table 1 were for a geometric Brownian motion with
constants r and v

dSt = rSdt+ vStdWt, 0 ≤ t < T. (2.5)

Table 1 shows the numerical order of variance convergence of Yℓ with the MLMC method
using the Euler and the Milstein scheme in Giles[2][3] .

Euler scheme Milstein scheme
Vanilla option O(h) -
Asian option O(h) O(h2)
Lookback option O(h) O(h2)
Digital option O(h1/2) O(h3/2)
Barrier option - O(h3/2)

M in the complexity theorem was set to be 4 in Giles[3]. However, M was set to be
2 in Giles[2]. Although the two papers treat the same types of Exotic options as follows:

5



Asian option, Lookback option, and Digital option, their method of calculating payoff is
different. Giles[2] uses Brownian interpolation results based on Glasserman[9]. The results
are presented in section 3 of Giles [2] and section 2,3 of Giles [8], and the aim is to achieve
an improved convergence rate using the Milstein scheme and to satisfy (2.4) (see section
3.1, 3.3, and 3.5 in Giles[2] ). In this study the three exotic options pricing of the MLMC
method using the order 1.5 Taylor strong scheme is based on Giles[2],[8] .

In the MLMC method, Ŷℓ is the estimator of E
[
P̂ℓ − P̂ℓ−1

]
≡ E

[
P̂ f
ℓ − P̂ c

ℓ−1

]
is calcu-

lated by using both fine level ℓ and coarse level ℓ − 1 simulation paths. E
[
P̂ f
ℓ − P̂ c

ℓ−1

]
is

the expectation of the difference between fine level discounted payoff and coarse level dis-
counted payoff. IfM is equal to 4, fine level L simulation paths, which are generated by using
the discretization of (2.5) with time step hL, are {Ŝf,i

t0 , Ŝ
f,i
t1 , Ŝ

f,i
t2 , . . . , Ŝ

f,i
tD
}, i = 1, 2, . . . , NL,

and coarse level L − 1 simulation paths, which are generated by using the discretization
of (2.5) with time step hL−1, are {Ŝc,i

t0 , Ŝ
c,i
t4 , Ŝ

c,i
t8 , . . . , Ŝ

c,i
tD
}, i = 1, 2, . . . , NL. Then we de-

note {Ŝf,i
tn }n=0,1,...,D, {Ŝc,i

tn }n=0,4,...,D as {Ṡf,i
m }m=0,1,...,4L , {Ṡc,i

m }m=0,1,...,4L−1 . If M is equal to 2,

fine level ℓ simulation paths are {Ŝf,i
t0 , Ŝ

f,i
t1 , Ŝ

f,i
t2 , . . . , Ŝ

f,i
tD
}, i = 1, 2, . . . , NL, and coarse level

L − 1 simulation paths are {Ŝc,i
t0 , Ŝ

c,i
t2 , Ŝ

c,i
t4 , . . . , Ŝ

c,i
tD
}, i = 1, 2, . . . , NL. If L − 1 is fine level,

fine level L − 1 and coarse level L − 2 simulation paths are {Ŝf,i
t0 , Ŝ

f,i
t2 , Ŝ

f,i
t4 , . . . , Ŝ

f,i
tD
}, i =

1, 2, . . . , NL−1 and {Ŝc,i
t0 , Ŝ

c,i
t4 , Ŝ

c,i
t8 , . . . , Ŝ

c,i
tD
}, i = 1, 2, . . . , NL−1, respectively. Then we denote

{Ŝf,i
tn }n=0,2,...,D, {Ŝc,i

tn }n=0,4,...,D as {Ṡf,i
m }m=0,1,...,2L−1 , {Ṡc,i

m }m=0,1,...,2L−2 . The following two sub-
sections summarize how to price each option, based on (2.5), in the Euler scheme case
(Giles [3]) and the Milstein scheme case (Giles [2],[8]). F is each option payoff. The fine

level payoff P̂ f,i
ℓ and the coarse level payoff P̂ c,i

ℓ−1 are calculated as follows.

2.3.1. Euler Scheme Case (Giles [3])

• European vanilla call option

F = exp(−rT )max(0, ST −K).

P̂ f,i
ℓ = exp(−rT )max(0, Ŝf,i

D −K), i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )max(0, Ŝc,i

D −K), i = 1, 2, . . . , Nℓ.

• Asian call option

F = exp(−rT )max(0, S −K),

where the mean value over the time interval is defined by

S ≡ T−1

∫ T

0

Stdt.

P̂ f,i
ℓ = exp(−rT )max(0, Ŝ

f,i

ℓ −K), i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )max(0, Ŝ

c,i

ℓ−1 −K), i = 1, 2, . . . , Nℓ.

where the mean value are expressed as follows.

Ŝ
f,i

ℓ = T−1
∑

m=0,1,...,Mℓ−1

1

2
(Ṡf,i

m + Ṡf,i
m+1)hℓ, i = 1, 2, . . . , Nℓ,

Ŝ
c,i

ℓ−1 = T−1
∑

m=0,1,...,Mℓ−1−1

1

2
(Ṡc,i

m + Ṡc,i
m+1)hℓ−1, i = 1, 2, . . . , Nℓ.
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• Lookback call option

F = exp(−rT )

(
ST − min

0≤t<T
St

)
.

P̂ f,i
ℓ = exp(−rT )

(
Ŝf,i
tD

− Ŝf,i
min,ℓ

)
, i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )

(
Ŝc,i
tD

− Ŝc,i
min,ℓ−1

)
, i = 1, 2, . . . , Nℓ.

where the minimum value of St over the path is calculated by

Ŝf,i
min,ℓ =

(
min

m=0,1,...,Mℓ
Ṡf,i
m

)(
1− β∗v

√
hℓ

)
, i = 1, 2, . . . , Nℓ,

Ŝc,i
min,ℓ−1 =

(
min

m=0,1,,...,Mℓ−1
Ṡc,i
m

)(
1− β∗v

√
hℓ−1

)
, i = 1, 2, . . . , Nℓ,

with β∗ ≈ 0.5826.
• Digital call option

F = exp(−rT )H (ST −K) .

P̂ f,i
ℓ = exp(−rT )H

(
Ŝf,i
tD

−K
)
, i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ = exp(−rT )H

(
Ŝc,i
tD

−K
)
, i = 1, 2, . . . , Nℓ,

where H(x) is the Heaviside function.

2.3.2. Milstein Scheme Case (Giles [2],[8])

• Asian option

F = exp(−r)max(0, S −K).

P̂ f,i
ℓ = exp(−rT )max(0, Ŝ

f,i

ℓ −K), i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )max(0, Ŝ

c,i

ℓ−1 −K), i = 1, 2, . . . , Nℓ.

Ŝ
f,i

ℓ = T−1
∑

m=0,1,...,Mℓ−1

(
1

2
(Ṡf,i

m + Ṡf,i
m+1)hℓ +∆If,im

)
, i = 1, 2, . . . , Nℓ,

Ŝ
c,i

ℓ−1 = T−1
∑

m=0,1,...,Mℓ−1−1

(
1

2
(Ṡc,i

m + Ṡc,i
m+1)hℓ−1 +∆Ic,im

)
, i = 1, 2, . . . , Nℓ,

where ∆If,im is a N(0, h3
ℓ/12) random variable. ∆Ic,im is calculated by

∆Ic,im = ∆If,im +∆If,im+1 +
1

2
hℓ(∆Wm −∆Wm+1).

Note that ∆If,im , ∆If,im+1,∆Wm, and ∆Wm+1 come from corresponding fine path simulation.
• Lookback option

F = exp(−rT )

(
ST − min

0≤t≤T
St

)
,

P̂ f,i
ℓ = exp(−rT )

(
Ŝf,i
tD

− Ŝf,i
min,ℓ

)
, i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )

(
Ŝc,i
tD

− Ŝc,i
min,ℓ−1

)
, i = 1, 2, . . . , Nℓ.
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Then the minimum value of St over the path is calculated by

Ŝf,i
min,ℓ = min

0≤m≤Mℓ−1
Ṡf,i
m,min,ℓ,

Ŝc,i
min,ℓ−1 = min

0≤m≤Mℓ−1−1
Ṡc,i
m,min,ℓ−1,

where

Ŝf,i
m,min,ℓ =

1

2

(
Ṡf,i
m + Ṡf,i

m+1 −
√

(Ṡf,i
m+1 − Ṡf,i

m )2 − 2v2h logU i
m

)
,

Ŝc,i
m,min,ℓ−1 = min (x1, x2) .

Here x1 and x2 are

x1 =
1

2

(
Ṡc,i
m + Ṡc,i

m+1 −
√
(Ṡc,i

m+1 − Ṡc,i
m )2 − 2v2hℓ logU i

m

)
,

x2 =
1

2

(
Ṡc,i
m+1 + Ṡc,i

m+2 −
√

(Ṡc,i
m+2 − Ṡc,i

m+1)
2 − 2v2hℓ logU i

m+1

)
.

Then U i
m and U i

m+1 from the simulation of P̂ f,i
ℓ are uniform random variables, and the

Brownian interpolation value Ṡc,i
m+1 is calculated by

Ṡc,i
m+1 =

1

2
(Ṡf,i

m + Ṡf,i
m+1 − vDi

m),

where

Di
m = (W i

m+2 −W i
m+1)− (W i

m+1 −W i
m)

is a N(0, hℓ) random variable.
• Digital option

F = exp(−rT )1{ST>K}(ST ),

where 1{ST>K} is an indicator function. Note that 1{ST>K}(ST ) coincides with H(ST −K)
in subsection 2.3.1.

P̂ f,i
ℓ = exp(−rT )p̂f,i,ℓ,

P̂ c,i
ℓ−1 = exp(−rT )p̂c,i,,ℓ−1,

where

p̂f,i,ℓ = Φ

(
Ṡf,i
Mℓ−1

+ rhℓ −K

|v|
√
hℓ

)
,

p̂c,i,,ℓ−1 = Φ

(
Ṡc,i
Mℓ−1−1

+ 2rhℓ + v∆W i
Mℓ−1−1

−K

|v|
√
hℓ

)
.

Here Φ(·) is the cumlative normal distribution function.
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3. Numerical Results

All numerical results are based on the results of Giles [2],Giles [3] . Thus the verification

contents are the convergence of both Vℓ and E[P̂ℓ − P̂ℓ−1] and the effect of computational
complexity reduction. Each result, except for subsection 3.2.2, 3.2.4, and 3.3 is presented
for the SDE (2.5). We set S0 = 1, r = 0.05, v = 0.2, T = 1, and strike price K = 1. In
each payoff case, except subsection 3.3, we set M = 2. In subsection 3.3, we set M = 4. In
addition, The estimated quantities of the top plots of all odd-numbered figures, Figure 18,
and Figure 20 are based on 107 simulation paths. Here we refer to the MLMC method using
the Euler scheme, the Milstein scheme, and the order 1.5 Taylor strong scheme as ”MLMC
(Elr),” ”MLMC (Mls),” and ”MLMC (Tlr),” respectively. As with the MLMC (Elr), the
MLMC (Mls), and the MLMC (Tlr), we use ”SMC (Elr),” ”SMC (Mls),” and ”SMC (Tlr).”

3.1. Performance of MLMC method using Order 1.5 Taylor strong scheme

We verify whether the MLMC (Tlr) is numerically superior to the SMC (Tlr) in the valuation
of four options (European vanilla, Asian, Lookback, and Digital). We also numerically
compare the performance of the MLMC (Tlr) and the performance of the MLMC (Elr) as
a reference. Note that Giles [3] tested the four options using the MLMC (Elr) with M = 4.
The top left plot of Figure 1, 3, 5, and 7 shows the convergence of Vℓ, and the top right
plot shows the convergence of E[P̂ℓ − P̂ℓ−1]: The top left plot’s slope of −x(x > 0) and the

top right plot’s slope of −y(y > 0) mean that V (hℓ) = O(hx
ℓ ) and E[P̂ℓ − P̂ℓ−1] = O(hy

ℓ ).
The bottom left plot offers a comparison of computational cost between the MLMC (Tlr)
and the MLMC (Elr). The two left plots of Figure 2, 4, 6, and 8 show the number of
simulation paths for the MLMC (Elr) or the MLMC (Tlr) to achieve an accuracy ϵ for five
different values of ϵ. The two right plots show the total computational cost for them to
attain an accuracy ϵ for five different values of ϵ. Note that the MLMC method using the
Euler scheme and the calculations of subsection 2.3.2 based on the Brownian interpolation
method, the ”MLMC (EBM),” can achieve a significant reduction in computational cost,
compared to the MLMC (Elr) (see Figure 18-20).

3.1.1. European vanilla option

As with M = 4 in Giles [3], in the MLMC (Elr) with M = 2, the two top plots of Figure 1

show that Vℓ = O(hℓ) and E[P̂ℓ − P̂ℓ−1] = O(hℓ). Furthermore, they show that the MLMC
(Tlr) has faster convergence than the MLMC (Elr). The MLMC (Tlr)’s slope of −3 means

a O(h3
ℓ) convergence of Vℓ. At ℓ = 2, 3 a line of E[P̂ℓ − P̂ℓ−1] for the MLMC (Tlr) shows

faster weak convergence. For l = 4, Vℓ of the MLMC (Tlr) is more than 10,000,000 times

smaller than V [P̂ℓ] of both the SMC (Tlr) and the SMC (Elr), and is more than 10,000
times smaller than Vℓ of the MLMC (Elr). Compared with the SMC (Tlr), the bottom right
plot of Figure 2 shows that the MLMC (Tlr) attains computational cost reduction of more
than 90%. Compared with the MLMC (Elr), the MLMC (Tlr) attains a computational cost
reduction of about 70-80%.

3.1.2. Asian option

The top left plot of Figure 3 shows the MLMC (Tlr)’s slope of −3. It means the O(h3
ℓ)

convergence of Vℓ. The top right plot of Figure 3 shows the MLMC (Tlr)’s slope of −3. It

means the O(hℓ) convergence of E[P̂ℓ − P̂ℓ−1]. Compared with the SMC (Tlr), the bottom
right plot of Figure 4 shows that MLMC (Tlr) attains a computational complexity reduction
of more than 90%. As with the results withM = 4 in Giles [3], in the case of the MLMC (Elr)

with M = 2, the two top plots of Figure 3 show O(hℓ) convergence of Vℓ and E[P̂ℓ − P̂ℓ−1].
The top left plot of Figure 3 shows that the MLMC (Tlr) has faster strong convergence than
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the MLMC (Elr); however, the top right plot of Figure 3 shows that the MLMC (Tlr) and
the MLMC (Elr) have the same order of weak convergence. Vℓ of the MLMC (Tlr) is more

than 10,000 times smaller than V [P̂ℓ] of both the SMC (Tlr) and the SMC (Elr) for ℓ = 3,
and is more than 1,000 times smaller than Vℓ of the MLMC (Elr) for ℓ = 5. Compared with
the MLMC (Elr), the bottom left plot of Figure 4 shows that the MLMC (Tlr) attains a
computational cost reduction of about 85-90%.

3.1.3. Lookback option

The top left plot of Figure 5 shows the MLMC (Tlr)’s slope of −3. It means the O(h3
ℓ)

convergence of Vℓ. As in the Asian option case, the top right plot shows the MLMC (Tlr)’s

slope of −3. It means the O(hℓ) convergence of E[P̂ℓ − P̂ℓ−1]. Compared with the SMC
(Tlr), the bottom right plot of Figure 6 shows that the MLMC (Tlr) attains a computational
cost reduction of more than 99%. As with the results of M = 4 in Giles [3], in the case
of the MLMC (Elr) with M = 2, the two top plots of Figure 5 show approximately O(hℓ)

convergence of Vℓ and E[P̂ℓ− P̂ℓ−1]. As in the Asian option case, the top left plot of Figure 5
shows that the MLMC (Tlr) has faster strong convergence than the MLMC (Elr); however,
the top right plot shows that the MLMC (Tlr) and the MLMC (Elr) have the same order of
weak convergence. For l = 5, the Vℓ of the MLMC (Tlr) is more than 10,000 times smaller

than V [P̂ℓ] of both the SMC (Tlr) and the SMC (Elr), and is more than 100 times smaller
than the Vℓ of the MLMC (Elr). For l = 8, the Vℓ of the MLMC (Tlr) is more than 1,000,000

times smaller than V [P̂ℓ] of both the SMC (Tlr) and the SMC (Elr), and is more than 1,000
times smaller than the Vℓ of the MLMC (Elr). Compared with the MLMC (Elr), the bottom
left plot of Figure 5 shows that the MLMC (Tlr) attains a computational cost reduction of
approximately 95% for ϵ = 5.0× 10−5.

3.1.4. Digital option

As with the results of M = 4 in Giles [3], in the case of the MLMC (Elr) with M = 2, the

two top plots of Figure 7 show that Vℓ = O(h
1/2
ℓ ) and E[P̂ℓ − P̂ℓ−1] = O(hℓ). In addition,

they show that the MLMC (Tlr) has faster strong and weak convergence than the MLMC

(Elr). The MLMC (Tlr)’s slope of −3/2 means the O(h
3/2
ℓ ) convergence of Vℓ. The MLMC

(Tlr)’s slope of −2 means the O(h2
ℓ) convergence of E[P̂ℓ − P̂ℓ−1]. For l = 6, the Vℓ of

the MLMC (Tlr) is more than 10,000 times smaller than the V [P̂ℓ] of both the SMC (Tlr)
and the SMC (Elr), and is more than 500 times smaller than the Vℓ of the MLMC (Elr).
Compared with the SMC (Tlr), the bottom right plot of Figure 8 shows that the MLMC
(Tlr) attains a computational cost reduction of up to 99.9%. Compared with the MLMC
(Elr), the bottom left plot of Figure 7 shows that the MLMC (Tlr) attains a computational
cost reduction of up to 99.9%.

3.2. Comparison of MLMC methods using Three Discretization schemes

We compare the performance between the MLMC (Elr), the MLMC (Mls), and the MLMC
(Tlr) for pricing the other four exotic options (Power, Rainbow, Cliquet, and Exchange).
The four options have not been tested by the MLMC method in previous studies. The
top left plot of Figure 9, 11, 13, and 15 shows the convergence of Vℓ. The top right plot
shows the convergence of E[P̂ℓ − P̂ℓ−1]. The three left plots of Figure 10, 12, 14, and
16 show the number of paths for the MLMC (Elr), or the MLMC (Mls), or the MLMC
(Tlr) to achieve an accuracy ϵ for five different values of ϵ. The three right plots show the
total computational cost for them to attain the accuracies. The bottom left plot offers a
comparison of computational cost between the MLMC (Tlr), the MLMC (Mls), and the
MLMC (Elr).
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3.2.1. Power option

The Power call option discounted payoff is given by

F = exp(−rT )max
(
SG
T −KG, 0

)
with constant G > 0. The fine level and the coarse level discounted payoffs are calculated
by

P̂ f,i
ℓ = exp(−rT )max(0, (Ŝf,i

tD
)G −KG), i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )max(0, (Ŝc,i

tD
)G −KG), i = 1, 2, . . . , Nℓ.

We set G = 2. The two top plots in Figure 9 show that the MLMC (Tlr)’s convergence of

both Vℓ and E[P̂ℓ − P̂ℓ−1], O(h3
ℓ) and O(h2

ℓ), is the fastest of the three. In addition, they

show that the MLMC (Mls)’s convergence of E[P̂ℓ − P̂ℓ−1], O(hℓ), is about the same as the
MLMC (Elr) and that V (hℓ) convergence of the MLMC (Mls), O(h2

ℓ), is faster than that
of the MLMC (Elr), O(hℓ). The top left plot shows that the SMC (Tlr), the SMC (Mls),

and the SMC (Elr) have about the same variance, V [P̂ℓ]. For l = 3, the Vℓ of the MLMC

(Tlr) is more than 1,000,000 times smaller than V [P̂ℓ], and is more than 100 times smaller
than the Vℓ of the MLMC (Mls), and is more than 1,000 times smaller than the Vℓ of the
MLMC (Elr). Figure 10 shows the computational cost of MLMC and SMC. Compared
with the SMC (Elr), the SMC (Mls), and the SMC (Tlr), the MLMC (Elr), the MLMC
(Mls), and the MLMC (Tlr) significantly reduce computational cost, respectively. The two
bottom plots of Figure 9 show that the MLMC (Tlr) needs smallest computational cost to
achieve required accuracy ϵ. Compared with the MLMC (Mls), the MLMC (Tlr) attains a
computational cost reduction of about 15% for five different values of ϵ.

3.2.2. Rainbow option

We treat two-color Rainbow call option. The discounted payoff is given by

F = exp(−rT )max
(
max[S1(T ), S2(T )]−K, 0

)
where {S1

t }t and {S2
t }t are two geometric Brownian motions with constants r1, r2, v1, and

v2

dS1
t = r1S

1
t dt+ v1S

1
t dW

1
t , 0 ≤ t < T,

dS2
t = r2S

2
t dt+ v2S

2
t dW

2
t , 0 ≤ t < T,

where {W 1
t }t and {W 2

t }t are correlated with dW 1
t dW

2
t = ρdt with ρ ∈ [−1, 1]. The fine and

the coarse level discounted payoffs are calculated by

P̂ f,i
ℓ = exp(−rT )max

(
max[Ŝ1,f,i

tD
, Ŝ2,f,i

tD
]−K, 0

)
, i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−rT )max

(
max[Ŝ1,c,i

tD
, Ŝ2,c,i

tD
]−K, 0

)
, i = 1, 2, . . . , Nℓ.

We set S1
0 = S2

0 = 1, r1 = r2 = 0.05, v1 = v2 = 0.2, and ρ = 0.4. The result denotes the
same tendency as the Power option case. The two top plots of Figure 11 show that the
MLMC (Tlr)’s convergence of both Vℓ and E[P̂ℓ − P̂ℓ−1], O(h3

ℓ) and O(h2
ℓ), is the fastest of

the three. Further, they show that the MLMC (Mls)’s convergence of E[P̂ℓ− P̂ℓ−1], O(hℓ), is
about the same as the MLMC (Elr) and that V (hℓ) convergence of the MLMC (Mls), O(h2

ℓ),
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is faster than that of the MLMC (Elr), O(hℓ). The top left plot of Figure 11 shows that the

three SMC methods have about the same variance, V [P̂ℓ]. For l = 4, the Vℓ of the MLMC

(Tlr) is about 1,000,000 times smaller than V [P̂ℓ], and is more than 100 times smaller than
the Vℓ of the MLMC (Mls), and is more than 10,000 times smaller than the Vℓ of the MLMC
(Elr). Figure 12 shows the computational cost of MLMC and SMC. Compared with the
SMC (Elr), the SMC (Mls), and the SMC (Tlr), the MLMC (Elr), the MLMC (Mls), and
the MLMC (Tlr) significantly reduce computational cost, respectively. The two bottom
plots of Figure 11 show that the MLMC (Tlr) needs smallest computational cost to achieve
required accuracy ϵ. Compared with the MLMC (Mls), the MLMC (Tlr) attains a slight
computational cost reduction of about 5-15%.

3.2.3. Cliquet option

We treat the Cliquet call option whose discounted payoff is given by

F1 = exp(−rT1)max (ST1 −K, 0) ,

F2 = exp(−rT )max (ST − ST1 , 0)

with T1 = T/2. Note that we set the minimum level as 1, since we consider the semiannual
payoff. The fine level and the coarse level discounted payoffs are calculated by

P̂ f,i
1,ℓ = exp(−rT1)max(0, Ŝf,i

T1
−K), i = 1, 2, . . . , Nℓ,

P̂ c,i
1,ℓ−1 = exp(−rT1)max(0, (Ŝc,i

T1
−K), i = 1, 2, . . . , Nℓ,

P̂ f,i
2,ℓ = exp(−rT )max(0, Ŝf,i

tD
−K), i = 1, 2, . . . , Nℓ,

P̂ c,i
2,ℓ−1 = exp(−rT )max(0, Ŝc,i

tD
−K), i = 1, 2, . . . , Nℓ.

The result except E[P̂ℓ− P̂ℓ−1] convergence has the same tendency in both the Power option
and Rainbow option results. The two top plots of Figure 13 show that the MLMC (Tlr)’s

convergence of both Vℓ and E[P̂ℓ − P̂ℓ−1], O(h3
ℓ) and O(h2

ℓ), is the fastest of the three.

Further, they show that the MLMC (Mls)’s convergence of both Vℓ and E[P̂ℓ − P̂ℓ−1] is the
second fastest of the three. The top left plot of Figure 13 shows that the SMC (Tlr), the

SMC (Mls), and the SMC (Elr) have about the same variance, V [P̂ℓ]. For l = 3, the Vℓ

of the MLMC (Tlr) is more than 10,000,000 times smaller than V [P̂ℓ], and is more than
100 times smaller than the Vℓ of the MLMC (Mls), and is more than 10,000 times smaller
than the Vℓ of the MLMC (Elr). Figure 14 shows the computational cost of MLMC and
SMC. Compared with the three SMC methods, the three MLMC methods significantly
reduce computational cost, respectively. The two bottom plots of Figure 13 show that the
MLMC (Tlr) needs the smallest computational complexity to achieve required accuracy ϵ.
Compared with the MLMC (Mls), the MLMC (Tlr) attains a slight computational cost
reduction of approximately 7% for ϵ = 5.0× 10−5.

3.2.4. Exchange option

The Exchange option discounted payoff is given by

F = exp(−rT )max
(
S1
T − S2

T , 0
)

(3.1)

where {S1
t }t and {S2

t }t are two geometric Brownian motions with constants r, q1, q2, v1, and
v2

dS1
t = (r − q1)Stdt+ v1

(
S1
t , t
)
StdW

1
t , 0 < t < T,

dS2
t = (r − q2)Stdt+ v2

(
S2
t , t
)
StdW

2
t , 0 < t < T.
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where {W 1
t }t and {W 2

t }t are correlated with dW 1
t dW

2
t = ρdt with ρ ∈ [−1, 1]. We define

{Ut}t ≡ {S1
t /S

2
t }t. (3.1) can be rewritten as follows.

F = exp(−rT )max
(
S1
T − S2

T , 0
)

= S2
t0
exp(−q2T )max

(
S1
T/S

2
T − 1, 0

)
= S2

t0
exp(−q2T )max (UT − 1, 0) ,

where {Ut}t follows a geometric Brownian motion

dUt = (q2 − q1)Utdt+ v∗UtdW
∗
t , 0 ≤ t < T (3.2)

with v∗ ≡
√

v21 + v22 − 2ρ1,2v1v2 (see Villani [15]). We simulate the discretization of (3.2)
to price this Exchange option. The fine level and the coarse level discounted payoffs are
calculated by

P̂ f,i
ℓ = exp(−q2T )Ŝ

2,f,i
Mℓ max(0, Û f,i

Mℓ −K), i = 1, 2, . . . , Nℓ,

P̂ c,i
ℓ−1 = exp(−q2T )Ŝ

2,c,i
Mℓ max(0, Û c,i

Mℓ −K), i = 1, 2, . . . , Nℓ.

We set q1 = 0.05, q2 = 0.04, v1 = 0.2, v2 = 0.3, and ρ = 0.4. The result denotes the
same tendency as the Cliquet option case. The two top plots of Figure 15 show that the
MLMC (Tlr)’s convergence of both Vℓ and E[P̂ℓ − P̂ℓ−1], O(h3

ℓ) and O(h2
ℓ), is the fastest

of the three. Moreover, they show that the MLMC (Mls)’s convergence of both Vℓ and

E[P̂ℓ − P̂ℓ−1] is the second fastest of the three. The top left plot of Figure 15 shows that

the SMC (Tlr), the SMC (Mls), and the SMC (Elr) have about same variance, V [P̂ℓ]. For

ℓ = 3, the Vℓ of the MLMC (Tlr) is more than 1,000,000 times smaller than V [P̂ℓ], and
is more than 100 times smaller than the Vℓ of the MLMC (Mls), and is more than 10,000
times smaller than the Vℓ of the MLMC (Elr). Figure 16 shows the computational cost of
MLMC and SMC. Compared with the SMC (Elr), the SMC (Mls), and the SMC (Tlr), the
MLMC (Elr), the MLMC (Mls), and the MLMC (Tlr) significantly reduce computational
cost, respectively. The two bottom plots of Figure 15 show that the MLMC (Tlr) needs
the smallest computational cost to achieve required accuracy ϵ. Compared with the MLMC
(Mls), the MLMC (Tlr) attains a computational cost reduction of about 20%.

3.3. Vanilla option valuation by MLMC method based on the SABR model

The original SABR model was proposed by Hagan, Kumar, Lesniewski, and Woodward[10].
As with the Heston model, which was tested by the MLMC (Elr) by Giles [3], the SABR
model is a very well-known stochastic volatility model in both academic and practical fields.
In particular, the SABR model is used in many financial institutions, since the model can
capture the correct dynamics of the volatility smile in derivatives markets. We treat the
following SABR model (see Tian, Zhu, Klebaner, and Hamza[14]), which is obtained by
applying Ito’s lemma to the original model,

dSt = rStdt+ αtD(t, T )1−βSβ
t dW

1
t , 0 ≤ t < T, (3.3)

dαt = ναtdW
2
t , 0 ≤ t < T, (3.4)

with constants r, ν > 0 and β ∈ [0, 1], where D(t, T ) = exp
(
−
∫ T

t
r(s)ds

)
, and geometric

Brownian motions {W 1
t }t and {W 2

t }t are correlated with dW 1
t W

2
t = ρdt for some ρ ∈ [−1, 1].
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The corresponding discretizations of (3.3) and (3.4) are given by

Ŝtn+1 − Ŝtn = rŜtn∆t+ α̂tnexp ((T − tn)(β − 1)) Ŝβ
tn∆W 1

tn ,

n = 0, 1, . . . , D − 1,

α̂tn+1 − α̂tn = να̂tn

(
ρ∆W 1

tn +
√

1− ρ2∆W 2
tn

)
, n = 0, 1, . . . , D − 1,

where ∆W k
tn = W k

tn+1
− W k

tn , k = 1, 2. As with the Heston stochastic volatility model in
Giles [3], we cannot obtain theoretical results of the order of both strong and weak conver-
gence, as the volatility process {αt}t of the SABR model does not satisfy a global Lipschitz
condition. We set α̂0 = 0.2, β = 0.5, ρ = 0.4, and ν = 0.4. The top left plot of Figure 17,
however, numerically suggests that strong convergence is a little slower than the first order,
O(hℓ). The top right plot suggests that weak convergence is faster than the second order,
O(h2

ℓ). As with the Heston model case in Giles [3], the MLMC method is superior to the
SMC method under the SABR model, since the bottom right plot shows that the MLMC
(Elr) attains a computational cost reduction of about 75-90% compared to the SMC (Elr).

4. Concluding Remarks and Future Studies

In this study, we have numerically demonstrated the performance of the MLMC method
using the Euler scheme, the Milstein scheme, and the order 1.5 Taylor strong scheme for
options pricing. We first test the MLMC (Tlr) for European vanilla, Asian, Lookback,
and Digital options based on a simple geometric Brownian motion. Second, we compare
the numerical performance of the MLMC (Tlr), the MLMC (Mls), and the MLMC (Elr)
for Power, Rainbow, Cliquet, and Exchange options based on a simple geometric Brownian
motion, and finally, test the MLMC (Elr) for the European vanilla option based on the SABR
model. All the numerical results show that the MLMC method has much better performance
than the SMC method. The MLMC (Tlr) greatly reduces computational complexity (up to
99.9%) compared to other standard and multilevel Monte Carlo methods such as the SMC
(Elr), the SMC (Mls), the SMC (Tlr), and the MLMC (Elr). In addition, the MLMC (Tlr)
achieves a computational complexity reduction of up to 20% compared to the MLMC (Mls).
A direction that future studies may take is the theoretical analysis of the MLMC (Tlr). The
MLMC (Elr) was theoretically studied by Giles[3] for Lipschitz payoff case and by Giles,
Desmond, and Higham[5] for non-Lipschitz payoff case under global Lipschitz bounds. The
theoretical analysis of the MLMC (Mls) was studied by Giles, Debrabant, and Rößler[8]
under certain standard conditions such as a uniform Lipschitz condition, a linear growth
bound, and an additional Lipschitz conditon. Furthermore, the conditions under which
the order 1.5 Taylor strong scheme actually attains the order 1.5 of strong convergence is
discussed in Theorem 10.6.3 by Kloeden and Platen[12]. Thus, a theoretical analysis of the
MLMC (Tlr) for pricing the above-mentioned eight options should be studied on the basis of
both the theorem in Kloeden and Platen[12] and the conditions assumed in previous studies.
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Figure 1: European vanilla option (option price: 0.10)
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Figure 2: European vanilla option (option price: 0.10)
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Figure 3: Asian option (option price: 0.058)
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Figure 4: Asian option (option price: 0.058)

17



0 5 10

level ℓ

-60

-50

-40

-30

-20

-10

0

lo
g
2
v
a
ri
a
n
c
e
o
f
P

ℓ
,P

ℓ
-P

ℓ
−
1

Pℓ Elr
Pℓ-Pℓ−1 Elr
Pℓ Tlr
Pℓ-Pℓ−1 Tlr

0 5 10

level ℓ

-60

-50

-40

-30

-20

-10

0

lo
g
2
|m

e
a
n
|
o
f
P

ℓ
,P

ℓ
-P

ℓ
−
1

Pℓ Elr
Pℓ-Pℓ−1 Elr
Pℓ Tlr
Pℓ-Pℓ−1 Tlr

10
-4

10
-3

accuracy ǫ

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

ǫ
2
·
c
o
m
p
u
ta
ti
o
n
a
l
c
o
st SMC(Elr)

MLMC(Elr)
SMC(Tlr)
MLMC(Tlr)

Figure 5: Lookback option (option price: 0.17)
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Figure 6: Lookback option (option price: 0.17)
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Figure 7: Digital option (option price: 0.53)
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Figure 8: Digital option (option price: 0.53)
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Figure 9: Power option (option price: 0.24)
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Figure 10: Power option (option price: 0.24)
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Figure 11: Rainbow option (option price: 0.18)
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Figure 12: Rainbow option (option price: 0.18)
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Figure 13: Cliquet option (option price: 0.14)
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Figure 14: Cliquet option (option price: 0.14)
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Figure 15: Exchange option (option price: 0.13)
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Figure 16: Exchange option (option price: 0.13)
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Figure 17: European vanilla option based on SABR model (option price: 0.10)

0 5

level ℓ

-60

-40

-20

0

lo
g
2
v
a
ri
a
n
c
e
o
f
P

ℓ
,P

ℓ
-P

ℓ
−
1

Pℓ Elr
Pℓ-Pℓ−1 Elr
Pℓ EBM
Pℓ-Pℓ−1 EBM

0 5

level ℓ

-60

-40

-20

0

lo
g
2
|m

e
a
n
|
o
f
P

ℓ
,P

ℓ
-P

ℓ
−
1

Pℓ Elr
Pℓ-Pℓ−1 Elr
Pℓ EBM
Pℓ-Pℓ−1 EBM

10
-4

10
-3

accuracy ǫ

10
-2

10
-1

10
0

10
1

10
2

ǫ
2
·
c
o
m
p
u
ta
ti
o
n
a
l
c
o
st SMC(Elr)

MLMC(Elr)
SMC(EBM)
MLMC(EBM)

Figure 18: Asian option (option price: 0.058)
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Figure 19: Lookback option (option price: 0.17)
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Figure 20: Digital option (option price: 0.53)
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