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ABSTRACT

This study proposes a new selection mechanism to identify the

e�cient allocation of a deposit contract model by using agents' pref-

erence for honesty. The main result is that the e�cient allocation is

uniquely implementable through iterated elimination of strictly dom-

inated strategies, while it is never implementable in ex-post equilib-

rium under a canonical environment without preferences for honesty.

This result is obtained under small and weak preferences for honesty.

Furthermore, a mechanism designer requires no information on whose

preference it is.

Keywords: preference for honesty; implementation; mechanism design; be-

havioral economics; bank run; lying cost

JEL Classi�cation: C72, D82, G21, Z13

*This work was supported by JSPS KAKENHI Grant Numbers 22830103 and 24730278.
I gratefully acknowledge the helpful comments and suggestions of anonymous referees.
This paper is a revision of �Incorporation of Identity into Deposit Contract Design,� (WIF-
13-002).

�e-mail: yoshi.ohashi@gmail.com / yohashi@aoni.waseda.jp

1



1 Introduction

Implementation theory has recently started considering preferences for hon-

esty.1 This study incorporates a preference for honesty into a deposit con-

tract design. The main result states that the e�cient allocation of a deposit

contract model is uniquely implementable through iterated elimination of

strictly dominated strategies if some agents have a preference for honesty.2

The implementation of deposit contracts has a distinguished feature: the

feasibility of allocations. The set of feasible allocations depends on the pro�le

of agents' actions, which contrasts standard implementation problems.3 This

feasibility problem makes it di�cult to incentivize agents by manipulating

allocations, because some undesirable actions eliminate a desirable allocation

for other agents. This study shows that any e�cient allocation is never

implementable in ex-post equilibrium with only material preferences; that is,

there is no mechanism that implements the e�cient allocation in a canonical

environment of deposit contracts.

Given this fact, I introduce into the environment a preference for honesty

for some agents. An honest agent prefers to reveal his own type (a material

preference) if his action does not in�uence a social allocation. This preference

for honesty depends on other agents' actions. The point of the preference is

that whenever an honest agent behaves dishonestly, he prefers to do so only

after some other agents of the same type have done so. The honest preference

is �weak� in that he only wants to keep behaving honestly until other agents

of the same type behave dishonestly.4

In a banking model, typical dishonest behavior is a premature withdrawal

by an agent who does not require funds immediately, whom I refer to as pa-

tient. The honest patient agent hesitates to withdraw his deposits before

maturity. However, the preference for honesty implies that this hesitation

disappears if he recognizes that other patient agents have already withdrawn

1For example, Matsushima (2008a [23], 2008c [25]), Dutta and Sen (2012 [12]), Kartik
and Tercieux (2012 [19]), Kartik et al. (2014 [20]), and Ortner (2015 [28]).

2Hereafter, I refer to �implementation� as a full implementation: any equilibrium out-
come coincides with a desirable outcome.

3An exception is Hurwicz et al. (1995 [18]).
4Matsushima (2013 [26]) assumes a similar preference on implementation theory.
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their deposits before his �rst attempt at premature withdrawal. I represent

this preference as a psychological cost. The honest agent incurs a psychologi-

cal cost against a premature withdrawal, but the cost disappears for dishonest

actions of other agents.

This cost-reduction property comes from studies in social psychology. Wil-

son and Kelling (1982 [33]) propose the broken windows theory, which states

that people tend to become vandals when they observe small signs of social

disorder. Keizer et al. (2008 [21]) tested this hypothesis in �eld experiments

and concluded that the hypothesis is statistically signi�cant. They show

empirically that a norm violation in a society by some people causes subse-

quent norm violations by other people. I incorporate this phenomenon into

the psychological cost as its reduction.5 This cost and its reduction can be

arbitrarily small as long as the cost is positive.

The main result is that using this preference, the e�cient allocation of

a deposit contract model is implementable through iterated elimination of

strictly dominated strategies. Remarkably, the mechanism is not only simple

but also detail-free (Matsushima (2008b [24])) in that a planner need not

know who the honest agent is.6

1.1 The bank-run problem

This research posts several issues on the bank-run problem. As is widely

known, Diamond and Dybvig (1983 [11], hereafter DD) show that a deposit

contract achieves a socially e�cient allocation but may fail to be achieved

for some actions of depositors. This failure is referred to as a bank run.

DD propose two schemes for solving the problem. One is referred to as the

suspension of convertibility scheme. If the number of premature withdrawals

reaches some threshold, the bank immediately closes a window. Clearly,

this scheme can achieve the e�cient allocation only if the bank knows the

5Matsushima (2013 [26]) incorporates the results of obedience or conformity experi-
ments in social psychology.

6For example, Kartik et al. (2014 [20])) establish a�rmative results on general im-
plementation theory. However, their results considerably owe to the assumption that the
planner knows who the honest agent is. This study shows that a model of deposit contracts
does not require that assumption.
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number of impatient agents. The other is a deposit insurance scheme. It is

applicable when the bank does not know the number of impatient agents,

which is currently referred to as aggregate uncertainty. DD show that using

the deposit insurance scheme, the e�cient allocation is implementable in

dominant strategies.

However, this deposit insurance scheme has been controversial. Wallace

(1988 [31]) points out that this scheme violates a sequential service con-

straint introduced by DD themselves. He considers a �nite-agent model that

addresses DD's sequential service constraint and shows that the deposit in-

surance scheme fails to implement DD's e�cient allocation. Although his

criticism is important, his result crucially hinges on the assumption that the

bank and its depositors can communicate only once. The sequential service

constraint itself requires only that �a bank must service its customers sequen-

tially, on a �rst-come, �rst-served basis� (Wallace (1988 [31]), p. 3). There

is no reason to assume that a socially e�cient allocation should include only

one communication phase. Furthermore, the truly e�cient allocation of Wal-

lace's model di�ers from the e�cient allocation of DD. See Green and Lin

(2003 [16]) for an example.7

The second controversial point is that public deposit insurance schemes

su�er from bank moral hazard. Cooper and Ross (2002 [9]) establish a model

under which a deposit insurance scheme encourages excessive risk-taking by

banks. Martin (2006 [22]) shows that a liquidity provision policy of a central

bank can prevent bank runs without creating moral hazard problems. The

moral hazard problem is an important issue for �nancial system regulations;

however, concerning the resolution of the bank-run problem, these public

policies imply �nancial assistance by third parties, which softens the bank's

budget constraint and makes it easy to solve.

Given these observations, I reconsider the framework of DD with a se-

quential service constraint under aggregate uncertainty and without third

parties. The only di�erence of the DD model is the introduction of a prefer-

7The di�culty of a unique implementation of the e�cient allocation in Wallace's frame-
work is observed. See Ennis and Keister (2009a [13])). I show that there is no mechanism
that implements the e�cient allocation in DD's framework with only material preferences.
See Section 5.1 and the Appendix.
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ence for honesty. I establish that the e�cient allocation of the framework is

implementable through iterated elimination of strictly dominated strategies,

while the e�cient allocation is never implementable in ex-post equilibrium

without preferences for honesty. In particular, the mechanism uses neither

information other than that assumed by DD nor speci�c information on hon-

est agents. This study proposes a potential for improving deposit contract

design using aspects of human behavior.

The remainder of the paper is organized as follows. Section 2 proposes an

example that brie�y describes the main result. Section 3 formally describes

a deposit contract model and the de�nitions used in the model, including

the preference for honesty. Section 4 states the main result, and Section 5

presents a discussion. Section 6 concludes the paper. Some technical report

appears in the Appendix.

2 An Example

Suppose that there are three risk-neutral agents. Each agent is endowed a

unit of an asset. They can use an investment opportunity that yields 4x in

period t1 per x units of input if and only if the investment level is maintained

at x ≧ 1.5. They recognize that some of the agents need the asset before

maturity, say t0. For convenience, I refer to agents who need the asset at

t0 as impatient and those who do not as patient. Suppose that they sign a

contract whose payment plans are summarized as Table 1.

θ x y

0 0 4
1 1.5 3
2 1 1
3 1 0

Table 1: The payment plan for each agent, where θ is the number of impatient
agents, x is the payment at t0, and y is that at t1.
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Consider the state in which agent 1 is impatient and agents 2 and 3 are

patient. I assume that all agents have common knowledge about this state.

Given the contract, a Nash equilibrium exists where agents behave honestly

to their own types. Yet, it is easy to see that premature withdrawals by all

agents also constitute a Nash equilibrium, which is well-known as a bank-run

equilibrium in the banking literature.

Here, I propose an allocation mechanism that contains three provision

phases in t0 and that designates each agent's message space to be Mi =

{0, 1}×{0, 1}×{0, 1}. Letmi = (m1
i ,m

2
i ,m

3
i ) ∈ Mi denote agent i's message,

where mk
i = 0 (1) means a withdrawal tender (the continuation of deposits)

in Phase k.

� Phase 1. The mechanism provides b/2 to any withdrawal tender i if

m1
i = 0, where b ∈ (0, 1). The mechanism also counts the number of

withdrawal tenders, denoted by θ1.

� Phase 2. The mechanism provides b/2 to any withdrawal tender i if

m2
i = 0.

� Phase 3. Let

(x(θ1), y(θ1)) =



(0, 4) if θ1 = 0

(1.5, 3) if θ1 = 1

(1, 1) if θ1 = 2

(1, 0) if θ1 = 3.

The provision to agent i is determined by the following rules.

� Rule 1. If mi = (0, 0, 0), the mechanism provides x(θ1)− b.

� Rule 2. If mi is either (1, 0, 0) or (0, 1, 0) and θ1 > 1, the mech-

anism provides x(θ1) − b/2. If θ1 ≦ 1 while mi = (1, 0, 0) or

mi = (0, 1, 0), the mechanism provides nothing. If mi = (0, 0, 1),

the mechanism provides nothing.

� Rule 3. If mi = (1, 1, 0), (1, 0, 1), (0, 1, 1), or (1, 1, 1), the mech-

anism provides nothing.
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At t1, the mechanism provides y(θ1) to any agent i ifmi = (1, 1, 1); otherwise,

it provides nothing.

Suppose that agent 2 has a small preference for honesty. This preference

is de�ned on the set of outcomes and the set of messages. The honest be-

havior is m∗
2 = (1, 1, 1). The honest preference is as follows. If agent 2 act

dishonestly and he is the �rst dishonest person between patient agents, he

incurs a psychological cost denoted by c; otherwise, he does not incur the

cost even if he acts dishonestly. Formally, for a �xed m−2, suppose that m2

and m′
2 are not equal to m∗

2 but the �nal outcome is the same. The only

di�erence between m2 and m′
2 is that m2 makes agent 2 the �rst �liar� be-

tween agents 2 and 3. Then, m2 makes agent 2 cost c and m′
2 does not do

so. Equivalently, if agent 3 has already behaved dishonestly before agent 2's

�rst dishonest action, agent 2 does not hesitate to behave dishonestly.

I show that bank runs never occur in equilibrium with this mechanism

and the preference for honesty. Suppose that all agents send (0, 0, 0). Then,

θ1 = 3. Here, (1, 0, 0) makes θ1 = 2 but x(2) = x(3) = 1. Hence, agent 2's

payo� is

(b/2 + b/2 + x(3)− b)− c = x(3)− c

via Rule 1. If agent 2 unilaterally changes his message to (1, 0, 0), the cost c

vanishes and agent 2's payo� turns to x(2). Hence, the change to (1, 0, 0) is

better for agent 2. As a result, θ1 = 2. Then, agent 3 is better o� changing his

message to (1, 1, 1), because his deviation changes θ1 to 1 and he can obtain

y(θ1) = 3 at t1. Given this result, agent 2's payo� turns to zero because

of Rule 2. Then, agent 2 wants to change his message again to (1, 1, 1)

and to obtain 3 at t1. Agent 1 has no incentive to deviate from (0, 0, 0).

Consequently, the bank run does not occur and the optimal allocation is

realized in equilibrium.

This reasoning is valid if and only if c > 0. If c = 0, the bank-run equilib-

rium is still alive in the mechanism because this mechanism only separates

the provision of return into sub-periods.8

8Abreu and Matsushima (1992 [3], 1994 [4]) use a mechanism that requires agents
to announce messages multiple times, but the �nal outcome is provided once through a
lottery, including a degenerate one. The mechanisms used in this study require agents
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This simple example suggests that (i) mechanism design and the pref-

erence for honesty are both important; (ii) the positive cost for dishonest

behavior can be arbitrarily small; (iii) the mechanism is detail-free in that

it is not necessary for the designer to know who the honest agent is.

3 The Model

3.1 Environment

The economy comprises two periods, t0, t1. Players are a principal and agents.

The set of agents is I = [0, 1]. There is a single asset in the economy. Each

agent is endowed a unit of the asset and has already deposited it to the

principal. The principal has an investment opportunity that yields R > 1

units of the asset at t1 per a unit of input before t0. Premature liquidation

at t0 is possible without any cost, but it returns a unit of the asset at t0 per

unit of liquidation.9

At the commencement of t0, a fraction θ ∈ [0, 1] of the agents become

impatient. They obtain utility only in t0, whereas the remaining 1−θ agents,

referred to as patient, obtain utility in both t0 and t1. Let θi ∈ Θi = {0, 1}
denote an agent i's type, where 0 and 1 indicate impatient and patient,

respectively. To avoid an unimportant discussion, I make two assump-

tions on θ: (1) The aggregation of types coincides with the state, that is,

θ = µ({i ∈ I | θi = 0}), where µ is the Lebesgue measure; (2) If θ = 1 or

θ = 0, θi = 0 or θi = 1 for all i ∈ I, respectively.10 Throughout the paper,

any set is assumed to be measurable.

Each agent has a von Neumann�Morgenstern utility function on assets,

denoted by u : R+ → R+. For simplicity, u(0) = 0 and u(·) satisfy the same

to announce their own type three times, and outcomes according to their reports are
separately provided each time. Ohashi (2015 [27]) uses a similar mechanism to that in
this study and establishes a positive result for a deposit model with costly liquidation.

9Many previous studies have assumed liquidation costs, such as Cooper and Ross (1998
[8]), Allen and Gale (1998 [1], 2000 [2]), Ennis and Keister (2009b [14]), and Ohashi (2015
[27]).

10Mathematically, it may be possible if θ = 1, but there are a countable number of
agents with θi = 1. This second assumption rules out such a case.
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assumptions as in DD.

Assumption 1 u′(a) > 0, u′′(a) < 0 and −au′′(a)/u′(a) > 1 for all a > 0;

lim
a→0

u′(a) = ∞ and lim
a→∞

u′(a) = 0.

Let ak denote the amount of the asset that an agent obtains in tk. The

material utility of a type-θi agent for an allocation a = (a0, a1) is de�ned as

vi(a, θ) ≡ u(a0 + θia1). I follow a consequentialist premise in that only the

�nal outcome is of relevance to agents.

A socially e�cient allocation is de�ned as the solution to the following

optimization problem:

max
a0,a1

θu(a0) + (1− θ)u(a1)

s.t. (1− θ)a1 ≦ R(1− θa0).

For each θ ∈ (0, 1), Assumption 1 ensures that an optimal solution, denoted

by (a0(θ), a1(θ)), uniquely exists and satis�es 1 < a0(θ) < a1(θ) < R.11 If θ ∈
{0, 1}, a0(1) = 1 and a1(0) = R, whereas a0(0) and a1(1) are indeterminate.

Assumption 2 a0(0) = a1(1) = 0.

This assumption is plausible because the principal has to provide a0(1) = 1 at

t0 to achieve e�ciency; therefore the principal has no assets at t1. Using the

same reasoning, to provide a1(0) = R to all agents, we have to set a0(0) = 0.

Moreover, this assumption is necessary to describe the bankruptcy model.12

3.2 Preference for Honesty

Let Y denote the set of all possible outcomes, let Mi denote the set of mes-

sages of an agent i, and set M = ×Mi to be the direct product of Mi over

11The �rst-order condition implies that a0(θ) < a1(θ) for each θ ∈ (0, 1). The order
1 < a0(θ) < a1(θ) < R is led by the assumption that −au′′(a)/u′(a) > 1 for all a > 0. For
details, see DD.

12One may think that the principal could o�er any amount of the asset in t1 because
there is no agent in t1. Mathematically, it would be possible to o�er any positive amount
of the asset to at most �zero-measured� agents. However, if we allow this view, the DD
model (and my model) are free from bankruptcy without any honest preference. See the
Appendix for details.
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I. Similarly, M−i = ×j ̸=iMj denotes the direct product of Mj other than i.

A mapping g : M → Y is said to be an outcome function. A mechanism M
is de�ned as M = (M, g). I identify an outcome g(m) with a corresponding

allocation (a0, a1).
13

Let P(I) denote a partition of I, the set of agents. A preference for

honesty is de�ned on (M,P(I)). I write J = J(i) if i ∈ J ∈ P(I). Let

Ui(g(m),m, θ) denote the payo� function of agent i including a preference

for honesty under message pro�le m and state θ. I write U g
i (m, θ) for short.

I consider a mechanism such that Mi = Θi × Θi × Θi for each i ∈ I. For

convenience, I write mi = (m1
i ,m

2
i ,m

3
i ). For each i ∈ I and k ∈ {1, 2, 3}, let

m∗k
i (θi) = θi for each θi ∈ Θi. I denote m∗

i (θi) = (θi, θi, θi) for convenience.

For each i ∈ I, θi ∈ Θi, and mi ∈ Mi, I de�ne a number ki(θi,mi) such that

ki(θi,mi) = min{k | θi ̸= mk
i } if mi ̸= m∗

i and ki(θi,mi) = 4 if mi = m∗
i .

De�nition 1 An agent i has a preference for honesty on (M,P(I)) if for

any g : M → Y and θ ∈ Θ: For any m−i ∈ M−i, mi ∈ Mi, and m′
i ∈ Mi, if

vi(g(m), θ) = vi(g(m
′
i,m−i), θ) (1)

and

ki(θi,mi) < ki(θi,m
′
i) (2)

and

ki(θi,mi) ≦ kj(θj,mj) ≦ ki(θi,m
′
i) (3)

for all j ∈ J(i),

U g
i (m, θ) = vi(g(m), θ)− c

< vi(g(m
′
i,m−i), θ) = U g

i (m
′
i,m−i, θ)

for some c > 0; otherwise, U g
i (m, θ) = U g

i (m
′
i,m−i, θ).

I refer to the agents who have this preference for honesty as honest agents,

whereas I refer to agents who do not have such preference as standard agents.

13This notation implicitly assumes that agents are equally treated. For more general
allocation rules, see the Appendix.
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De�nition 1 implies that if the outcomes are the same for two di�erent mes-

sages (Equation (1)) but one of the messages is di�erent from an honest one

(Equation (2)) and the former message makes agent i be one of the �rst

dishonest agents of the same type (Equation (3)), agent i incurs a positive

cost if he chooses the former message. De�nition 1 also implies that agent

i's cost for �lying� vanishes if some other agent of the same type has already

lied even if he lies, that is, kj(θj,mj) < ki(θi,mi) for some j ∈ J(i) implies

c = 0, but both mi and m′
i may not be equal to m∗

i .

Let Jt denote the set of type-t agents, that is, Jt = {i ∈ I | θi = t}. I

set P(I) = {J0, J1}. Let J∗
t ⊂ Jt denote the set of honest type-t agents on

(M,P(I)). I assume J∗
0 = J0 and µ(J∗

1 ) > 0.14 I refer to the environment

that the preference for honesty holds as environment E∗ for short.

3.3 Solution Concepts

Let si : Θi → Mi denote agent i's strategy and let Si denote the set of all

strategies of i. I write S = ×Si and S−i = ×j ̸=iSj. Let s(θ) = (si, s−i)(θ) ≡
(si(θi), s−i(θ−i)) for convenience. Similarly, (mi, s−i)(θ) denotes a message

pro�le such that agent i reports mi = s′i(θi) while any other agent j reports

sj(θj). A strategy pro�le s is said to be ex-post equilibrium if

U g
i (s(θ), θ) ≧ U g

i ((mi, s−i)(θ), θ)

for all i ∈ I, θ ∈ Θ, and mi ∈ Mi. A message mi is strictly dominated against

S ′
−i ⊂ S−i at θ if for all s′−i ∈ S ′

−i, there is a message m′
i such that

U g
i ((mi, s−i)(θ), θ) < U g

i ((m
′
i, s−i)(θ), θ).

A strategy si is strictly dominated against S ′
−i ⊂ S−i at θ if the message

si(θi) is strictly dominated against S ′
−i at θ. For a given θ ∈ [0, 1], consider a

decreasing sequence of sets, (Sk
i )k∈N, such that the following hold: (i)S

0
i = Si;

(ii)Sk+1
i ⊂ Sk

i for each k ∈ N; (iii) any strategy si ∈ Sk
i \ Sk+1

i is strictly

14That is, all impatient agents are honest. In general, impatient agents always request
withdrawal in t0, and hence, this assumption is a very mild requirement.
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dominated at θ against Sk
−i. Given such a decreasing sequence, a set of

strategies S∗
i is said to be iteratively undominated at θ if S∗

i =
∩

k S
k
i holds.

An allocation (a0(θ), a1(θ)) is implementable through iterated elimination of

strictly dominated strategies if for all θ ∈ [0, 1], each agent i has an iteratively

undominated set S∗
i at θ and g(s∗(θ)) = (a0(θ), a1(θ)) for all s ∈ S∗.15

4 The Main Result

Theorem 1 The e�cient allocation (a0(θ), a1(θ)) is implementable through

iterated elimination of strictly dominated strategies under the environment

E∗.

Proof. Let M∗ denote the mechanism I consider. The M∗ has three provi-

sion phases in t0. Let mi = (m1
i ,m

2
i ,m

3
i ) ∈ Θi × Θi × Θi denote a message

of agent i. I write gki (m) for agent i's component of the allocation g(m) on

Phase k. Let θ1 = µ({i ∈ I | m1
i = 0}).

Phase 1: If m1
i = 0,

g1i (m) = b/2,

where b ∈ (0, 1). Otherwise, g1i (m) = 0.

Phase 2: For any message pro�le (m1
i ,m

2
i ),

g2i (m) =


b/2 if (0, 0)

b if (1, 0)

0 if (0, 1) or (1, 1).

Phase 3: For any message pro�le (m1
i ,m

2
i ,m

3
i ),

g3i (m) =


a0(θ1)− b if (0, 0, 0) or (1, 0, 0)

a0(θ1)− b/2 if (0, 1, 0) or (1, 1, 0)

0 if m3
i = 1.

15This de�nition requires that all agents be served an e�cient allocation. de Nicoló
(1996 [10]) investigates a run-proof mechanism that provides the e�cient allocation to
1− δ agents with δ being close to zero.
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If θ1 < 1, the mechanism provides the asset a1(θ1) in t1 whenever mi =

(1, 1, 1); if θ = 1, nothing is provided in t1.

Because of the consequentialist view, agents identify gi(m) with g1i (m) +

g2i (m) + g3i (m) in t0. By Assumption 2, (a0(0), a1(0)) = (0, R) and

(a0(1), a1(1)) = (1, 0). Hence, it does not matter when the true state is

θ = 0 or θ = 1. We must only consider the case of θ ∈ (0, 1).

(1. Impatient agents): Let i be an impatient agent. I show that i

always chooses (0, 0, 0). For each m, gi(m) = a0(θ1) if m3
i = 0 and gi(m)

is less than 1 if m3
i = 1. Because a0(θ1) ≧ 1, any message with m3

i = 1 is

strictly dominated against S−i:

S1
i = {si ∈ Si | si(0) = (·, ·, 0)}. (4)

Given S1, agent i obtains a0(θ1) regardless of his message. The cost-reduction

property of the preference for honesty implies that any message with m1
i = 1

is strictly dominated against S1
−i:

S2
i = {si ∈ S1

i | si(0) = (0, ·, 0)}. (5)

Once again, under the cost reduction property, the following set survives the

elimination of strictly dominated strategies against S2
−i:

S3
i = {si ∈ S2

i | si(0) = (0, 0, 0)}. (6)

(2. Patient honest agents): Let i be such an agent. The strategy

set S3 ensures that θ1 > 0. Suppose that m is such that m1
j = 0 for some

j ∈ J1 \ {i}. Both mi = (0, 0, 0) and m′
i = (1, 0, 0) generate the same

outcome, a0(θ1). Hence, the preference for honesty implies that

U g
i (mi,m−i, θ) = u(a0(θ1))− c

and

U g
i (m

′
i,m−i, θ) = u(a0(θ1)).
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Next, suppose that m is such that m1
j = 1 for each j ∈ J1 \ {i}. Then, agent

i deduces θ1 < 1 because of µ(J∗
1 ) > 0 and can de�nitely be served a1(θ1) in

t1. Hence, si(1) = (0, 0, 0) is strictly dominated against S2
−i. De�ne a subset

of strategies for each i ∈ J∗
1 as follows:

S4
i = {si ∈ S3

i | si(1) ̸= (0, 0, 0)} (7)

and for each j ∈ I \ J∗
1 , S

4
j = S3

j .

(3. Patient standard agents): Let i be such an agent. Because S4

ensures θ1 < 1, agent i can be served a1(θ1) > a0(θ1) in t1. All strategies

except for si(1) = (1, 1, 1) are strictly dominated against S4
−i. De�ne the

following subset of strategies for each i ∈ J1 \ J∗
1 ,

S5
i = {si ∈ S4

i | si(1) = (1, 1, 1)} (8)

and S5
j = S4

j for all other agents.

(4. Patient honest agents): Because S5 ensures θ1 < 1, we apply the

same reasoning as for patient standard agents. For each i ∈ J∗
1 ,

S6
i = {si ∈ S5

i | si(1) = (1, 1, 1)} (9)

and S6
j = S5

j for all other agents. The sets (4), (5), (6), (7), (8), and (9)

constitute a monotone decreasing sequence, and the honest strategy is a

unique iteratively undominated strategy for each agent. ■

I describe two remarks on the result. (1) : The key of the unique im-

plementation is the existence of patient and impatient honest agents. The

number of patient honest agents can be arbitrarily close to zero, whereas

the number of impatient honest agents is θ.16 This assumption is necessary

for my mechanism. The point of the mechanism is to set the outcomes ob-

tained through Phases 1 to 3 to be identical in order to use the preference

for honesty. However, if there are standard impatient agents, they have in-

16The number of the agents who have �non-standard� preferences is an interesting issue.
See Eliaz (2002 [15]) and Ortner (2015 [28]).
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di�erent preference on messages. Then, it may fail to convey the true state.

For example, suppose that all impatient agents are standard and that θ/2

impatient agents send (0, 1, 0) and the remainder θ/2 impatient agents send

(1, 0, 0). This results in θ1 = θ/2 and fails to convey the true state. For-

tunately, the assumption that all impatient agents are honest is harmless

because dishonest behavior is never pro�table for impatient agents.

(2): The mechanism uses neither the information regarding the size of the

cost c nor details of who the honest agent is. The mechanism works well as

long as the cost is positive and there are θ+ ϵ honest agents with arbitrarily

small ϵ > 0. It only requires splitting the provision.17 Hence, this mechanism

is detail-free (Matsushima (2008b [24])), practical, and easy to use. I do not

use any information other than DD in constructing the mechanism. The

equilibrium embodies a very plausible human behavior in deposit contracts:

I behave honestly in Phase 1. If θ1 = 1, I withdraw my deposit in Phases 2

and 3, otherwise I keep behaving honestly. The result can be extended to a

dynamic framework.18

5 Discussions

This section discusses three important topics.

5.1 On the necessity of preferences for honesty

No e�cient allocation is implementable with only material preferences. This

section states this fact in a slightly informal manner (for a formal description,

see the Appendix).

Suppose that all agents are standard. Any e�cient allocation is a0(1) = 1

by de�nition. Then, a1(1) = 0 by Assumption 2. This makes early with-

drawals of all agents constitute an ex-post equilibrium. To break this in-

17Ohashi (2015 [27]) uses such a separate-provision mechanism to achieve an e�cient
outcome under liquidation costs.

18Glazer and Rubinstein (1996 [17]) investigate the relation between the iteratively
undominated outcomes of normal games and the backward induction outcomes of extensive
games with perfect information.
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e�cient equilibrium, there must be a set of outcomes, Y ′, and a set of

agents, I ′ ⊂ I, such that for each i ∈ I ′, there exists yi ∈ Y ′ such that

vi(yi, θ) > vi((1, 0), θ). This yi should be provided in t0 because of Assump-

tion 2. Hence, we can write yi = (y′, 0) with y′ > 1 without loss of generality.

In any mechanism that breaks the ine�cient equilibrium, there is a message,

m′
i, that realizes the outcome yi. Clearly, this m′

i is di�erent from a mes-

sage, m∗
i , that provides (1, 0) to agent i. However, agent i always chooses m

′
i

whenever θi = 0. If µ(I ′) = 0, the outcome remains (1, 0), which is ine�cient

in any state θ ̸= 0. If µ(I ′) > 0, a di�erent allocation from the e�cient one

is achieved, because each i ∈ I ′ is served yi in any state θ ̸= 0.

If we abandon Assumption 2 and instead allow the mechanism to provide

positive amount of assets to �zero-measured� agents in t1 regardless of the

provision of t0, we can implement the e�cient allocation. However, simul-

taneously, our model no longer describes bankruptcy. It is easy to see this.

Suppose that the principal is ready to provide R units of the asset up to the

countable number of agents in t1 if and only if she has no asset in t0. Then,

any patient agent unilaterally wants to postpone withdrawals until t1, and

in the end, the principal successfully keeps some assets in hand in t0, which

implies no bankruptcy.

5.2 On the preference for honesty

The preference for honesty of an agent emerges if pairwise outcomes are in-

di�erent for him regarding his material payo�. �Pairwise� means that for

each m−i, mi, and m′
i, if mi ̸= m′

i and outcomes g(mi,m−i) and g(m′
i,m−i)

are �materially indi�erent,� agent i strictly prefers the message between mi

and m′
i that makes him be a �later� dishonest agent under the pro�le of m−i.

On the other hand, Kartik et al. (2014 [20]; hereafter KTH) assume that

a preference for honesty of an agent emerges if all outcomes are materially

indi�erent for him. That is, if g(mi,m−i) and g(m′
i,m−i) are materially in-

di�erent for all mi,m
′
i, and m−i, agent i strictly prefers to send an �honest�

message among his messages. Hence, the preference for honesty of my de�ni-

tion may emerge more often than in that of KTH, but my de�nition accepts
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more messages as �honest� compared to that of KTH. However, the imple-

mentation process is similar. (i) The preference for honesty plays a role of

gathering the information on the realized state. (ii) After the true state is re-

vealed, the mechanism has to incentivize standard agents to behave honestly.

Although KTH assumes an environment where separable punishment is avail-

able to ensure the incentive compatibility for standard agents, my canonical

environment of deposit contracts does not require this environment because

the e�cient allocation itself ensures incentive compatibility.

5.3 On sequential services

Wallace (1988 [31]) proposes a demand deposit model with �nite agents to

analyze a sequential service constraint. More recently, Green and Lin (2003

[16]), Peck and Shell (2003 [29]), Andolfatto et al. (2007 [6]), Andolfatto and

Nosal (2008 [5]), and Ennis and Keister (2009a [13]) investigate a �nite-agent

model under the following constraints: (i) there is aggregate uncertainty on

states and (ii) the principal and agents can communicate with each other

only once. Hereafter, I refer to the second constraint as �One-Period-One-

Communication� (OPOC).

Sequential service requires only that an outcome be allocated to agents �as

a function of the history of transactions up until that point� (Peck and Shell

(2003 [29]), p107). According to the de�nition, my mechanism satis�es the

sequential service constraint. A phase-k provision to an agent j is determined

by the history of transactions and messages up until the provision of j on

Phase k.

Aggregate uncertainty implies that �the fraction of people who will turn

out to be impatient is not known� before t0 (Wallace (1990 [32]), p15). My

mechanism is applicable to the environment with aggregate uncertainty with-

out modi�cations.

Many previous studies, like those shown here, implicitly assume the

OPOC constraint on sequential service. However, DD and my study inves-

tigate a continuum-agent model with aggregate uncertainty and sequential

service without OPOC. It is true that the former models create an inter-

17



esting problem of asset allocation, but we should distinguish their models

from ours because the e�cient allocations are di�erent. In the �nite-agent

models, impatient agents obtain returns that are di�erent from each other in

equilibrium. However, under my model, the returns are the same.

6 Concluding remarks

This paper introduced agents' preferences for honesty into a deposit contract

model, à la Diamond and Dybvig (1983 [11]), in an environment with ag-

gregate uncertainty on states and a sequential service constraint. The main

result is that a fully e�cient outcome is achievable while preventing self-

ful�lling bank runs. The contribution to the bank-run problem is that an

e�cient allocation is implementable with honest agents and with a simple

separate-provision and detail-free mechanism. It is also notable that the re-

sult is obtained without the need for public third-party organizations such

as deposit insurance or a central bank.

A On the feasible allocations

This section formally de�nes the set of feasible allocations. Let χk : I → R+

denote a provision to agents in tk. The total provision to agents in tk is

de�ned as
∫
i∈I χkdi ≡

∫
I
χkdµ.

19

I describe the set of feasible allocations in t0 as

Y0 =

{
χ0

∣∣∣ 0 ≦
∫
i∈I

χ0di ≦ 1

}
.

The set of feasible allocations in t1 depends on the amount of withdrawn

assets in t0, that is, χ0. Let z : Y0 → [0, 1] denote a functional such that

z(χ0) =
∫
i∈I χ0di. The principal can provide R(1 − z(χ0)) in total in t1;

19See, for example, Rudin (1987 [30], p19).
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hence, the set of feasible allocations in t1 is described as

Y1(χ0) =

{
χ1

∣∣∣ 0 ≦
∫
i∈I

χ1di ≦ R(1− z(χ0))

}
.

Let Y1 =
∪

χ0∈Y0
Y1(χ0). The set of all feasible allocations, Y , is de�ned as

Y =
{
(χ0, χ1) ∈ Y0 × Y1

∣∣∣ χ1 ∈ Y1(χ0)
}
.

The determination of y ∈ Y is equivalent to the determination of (χ0, χ1). I

write vi(y, θ) instead of u(χ0(i) + θiχ1(i)) if there is no confusion.

In the main body of this paper, I state as Assumption 2 that the principal

can provide nothing in t1 if she has liquidated all the investments in t0, that

is, a1(1) = 0. This assumption is described as follows.

Assumption 3 For any χ0 ∈ Y0, if z(χ0) = 1,

Y1(χ0) = {χ1 | ∀i ∈ I, χ1(i) = 0}.

I impose this assumption on Y . I refer to the �material� environment as

environment E , where the interest of agents is only their own material payo�s.

The e�cient allocation cannot be implementable in ex-post equilibrium

under the environment E with Assumption 3. To con�rm this, I introduce a

celebrated monotonicity condition.

De�nition 2 An allocation a satis�es ex-post monotonicity, if for any type

of reporting pro�le θ′, if a(θ) ̸= a(θ′), there exist i ∈ I and y ∈ Y , such that

vi(y, θ) > vi(a(θ
′), θ), (10)

while for every θ′i ∈ {0, 1}, if θ′ = (θ′i, θ
′
−i) is the true state,

vi(y, θ
′) ≦ vi(a(θ

′), θ′). (11)

Bergemann and Morris (2008, [7]) show that ex-post monotonicity is a nec-

essary condition for the unique implementation of a social choice rule in
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ex-post equilibrium. It is easy to see that Equations (10) and (11) cannot

be held simultaneously for the case of θ′ = 1. Because of Assumption 3,

θ′ = 1 implies that vi(a(θ
′), θ) = u(1) regardless of θi. By the same reason,

vi(y, θ) = u(χ0(i)). Hence, any mechanism has to provide χ0(i) > 1 for some

agent i if he wishes. However, if θ′i = 0 and the true state is θ′ = 1, agent i

prefers y to a(1), which contradicts Equation (11).

Assumption 3 is necessary for the environment E to model bankruptcy.

Indeed, setting aside Assumption 3, the e�cient allocation is implementable

in ex-post equilibrium without preferences for honesty.

Proposition 1 Under the environment E without Assumption 3, the e�-

cient allocation (a0(θ), a1(θ)) is uniquely implementable in ex-post equilib-

rium.

Proof. Suppose that all agents report mi = 0 when the true state is θ < 1.

Then, all agents are paid a0(1) = 1 and χ0 satis�es z(χ0) = 1. Consider a

mechanism that allocates χ1(j) = a1(1) > 1 for each j ∈ A ⊂ I \ ∅ with

µ(A) = 0 if z(χ0) = 1 and mj = 1. Because A is arbitrary, each patient

agent wants to change his message unilaterally from mi = 0 to mi = 1 under

this mechanism. ■
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