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Abstract

We propose a model of deriving the default probability of a company from the market data. We
use the risk neutral pricing method directly and obtain the approximation formulae of real world
default probability. The data analysis shows that the default probabilities under real measure are
estimated smaller than those under risk neutral measure as expected.

1 Introduction

We shall consider a way to obtain the default probability of some specific company or the average
default probability of given rating classes. If we rely only on the time of default for estimating the
probabilities, usual statistical method won’t work for each individual company’s default probability
as the targeting company has not defaulted yet. These probabilities may be obtained from the finance
data via sophisticated methods. We may, however, derive these impliedly from the interest spread
observed at the market, which are obtained under the equivalent martingale measure though. The
methods for deriving implied probability have several advantages over the regular statistical methods.
Here, we are to consider two probability spaces, one with ”real” probability and the other with
equivalent martingale measure. We shall consider the probability of default of certain events in both
space and their estimators. We probably must be careful distinguishing the probability of the events
and their estimators. We shall, however, be sloppy about these matters, hoping that the difference
will be clear from the context.

Since, other estimators estimated statistically are considered in the ”real” probability space, we
need to transform estimated implied default probabilities into the ones in real probability. The real
probability here may be subjective or objective. We note that under certain conditions, implied
default probability under the martingale measure and real measure is equal (cf. Takahashi[2011]).

Moreover, we don’t know what mean by the probability of default under the equivalent martingale
measure or default probability at the risk neutral world. And the resulting default probability is given
under the martingale measure. Therefore, it is not appropriate to compare these probabilities directly
with the ones obtained under the real probability (statistically obtained probability).

The average default probabilities for each rating classes may be derived impliedly as for the
individual cases. Here, we may raise the question. If we can compare these probabilities, as one
is under the real, the other is under the martingale measure. To make the comparison possible, we
need to convert the probability under the martingale measure to the real probability or vice versa.
The resulting default probability, however, is given under the equivalent martingale measure and it
cannot be compared to the statistically obtained probability.
∗Center for Finance Research, Waseda University
†Dept. of Business Administration, Tottori University of Environmental Studies
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Therefore, it would be better to have a method converting implied probabilities (under the risk
neutral world) to the ones under the ”real” probability measure. The recent paper by Ross [2013],
discusses the way to construct the real measure from the martingale measure. His method may be
applicable to our problem, we shall develop different approach which is more or less confined to the
estimation of default probabilities.

2 Main Results

Let (Ω,F ,Pr) be a probability space. And we shall consider discrete time normal model. We let T=

[0,1,2, . . . ,T] be a set of time points at which trading is taken place. Let,{x1, x2, . . . , xt}, 0 ≤ t ≤ T
are independent and identically distributed random variables withN(µ, σ2) under the ”real” prob-
ability measure Pr and this will be a source of randomness in our economic model. Let{Ft, t =
0,1, . . . ,T} be an increasing sequence of sigma algebra for whichFt ∈ σ{x1, x2, . . . , xt}, t =
1,2, . . . ,T, F0 = {∅,Ω}, andFT = F . We also denote Pr(t), t = 1, . . . ,T the restriction of Pr to
Ft.

We setr(t) be a risk free interest rate for the period [t, t + 1), t = 0,1, . . . ,T − 1. We assume that
the random evolution of ther(t) is given by the following stochastic difference equation,

r(t + 1)− r(t) = α(t, ω) + β(t, ω)xt t = 0,1, . . . ,T − 1, (1)

wherer(0) = r0 is a given constant.
In the economy we consider, there are default free government bond and risky corporate bond.

We suppose, except their credibility, they are equivalent. Let,P∗(t, s) andP(t, s) be the timet price
of zero coupon riskless (government) bond maturing ats (t < s < T) and risky (corporate) bond
with the same maturity respectively. First, we consider the riskless bond and we assume that,

P∗(t, t) = 1 for all t = 0,1, . . . ,T, (2)

P∗(t, s) ≥ 0 for all t, (3)

P∗(t + 1, s) − P∗(t, s) = µ∗(t, s)P∗(t, s) + σ∗(t, s)P∗(t, s)xt. (4)

We shall also suppose that the market is frictionless. Then, it is straight forward to show by the
method of Vasicek[1977], the necessary and sufficient condition for the no arbitrage opportunity in
the market is the existence of the functionλ(t) depends only ont for which

µ∗(t, s) − (1+ r(t))
σ∗(t, s)

= λ(t) for all 0 ≤ t ≤ s (5)

The equivalent martingale measureQ is now defined by

dQ(t) = exp

 t∑
i=1

λi xi −
1
2

t∑
i=1

λ2
i

 dPr(t), t = 1, . . . ,T (6)

(cf. Heath, Jarrow and Morton[1992]), where we have setλi = λ(i), xi = x(i), i = 1, . . . , t. We note
that

∑t
i=1 xi is distributed withN(

∑t
i=1 λi , t) underQ. Needless to say that

{
P∗(t,T)

B(t) , Ft, t = 0,1, . . . ,T
}

is a martingale underQ, whereB(t) =
∏t−1

s=0(1+ rs).
It follows that

P∗(t,T) = B(t)EQ
{

1
B(T)

|Ft

}
(7)
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Now, to consider the pricing of risky bond issued by companyk, we letτ = τk be the time of the
default of that company (k = 1, . . . ,K).

Pr{τ > t} = EPr{I[τ>t]} =
∫

[τ>t]
dPr

=

∫
[τ>t]

dPr(t)

dQ(t)
dQ

= EQ
I[τ>t] exp

− t∑
i=1

λi xi +
1
2

t∑
i=1

λ2
i




= EQ
I[τ>t] exp

− t∑
i=1

λi(xi − λi) −
1
2

t∑
i=1

λ2
i


 (8)

= e−
1
2

∑t
i=1 λ

2
i EQ

I[τ>t] + I[τ>t]

exp

− t∑
i=1

λi(xi − λi)

 − 1




= e−
1
2

∑t
i=1 λ

2
i Q{τ > t} + e−

1
2

∑t
i=1 λ

2
i EQ

exp

− t∑
i=1

λi(xi − λi)

 − 1

 − e−
1
2

∑t
i=1 λ

2
i Rem

where,EPr andEQ are expectations under Pr andQ respectively, and

Rem= EQ
I[τ≤t]

exp

− t∑
i=1

λi(xi − λi)

 − 1


 (9)

We estimate Pr{τ > t} by

P̃r{τ > t} = e−
1
2

∑t
i=1 λ

2
i Q{τ > t}

+ e−
1
2

∑t
i=1 λ

2
i EQ

exp

− t∑
i=1

λi(xi − λi)

 − 1

 (10)

Then,
|P̃r{τ > t} − Pr{τ > t}| ≤ e−

1
2

∑t
i=1 λ

2
i Rem, (11)

where

Rem= EQ
I[τ≤t]

exp

− t∑
i=1

λi(xi − λi)

 − 1


 (12)

In order to control the remainder term, the trick here is to replace the event{τ > t} by {τ ≤ t} the
second term inside the expectation sign in the equation (9). This comes from the observation that for
the most of the interesting application, the value oft is less than 10(years) and the probability of the
event{τ ≤ t} underQ is substantially small. It follows that we may consider the third term on the
right most side of (9) as a remainder. We next use Schwartz inequality,

| Rem| ≤ EQ
I[τ≤t]

 ∣∣∣∣ exp

− t∑
i=1

λi(xi − λi)

 − 1
∣∣∣∣ 


≤

√
Q{τ ≤ t}

√√
EQ

exp

−2
t∑

i=1

λi(xi − λi)

 − 2 exp

− t∑
i=1

λi(xi − λi)

 + 1


=

√
Q{τ ≤ t}

√
e2

∑t
i=1 λ

2
i − 2e

1
2

∑t
i=1 λ

2
i + 1 (13)
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Since

EQ
exp

− t∑
i=1

λi(xi − λi)

 − 1

 = exp

1
2

t∑
i=1

λ2
i

 − 1 (14)

It follows that,

Pr{τ > t} = e−
1
2

∑t
i=1 λ

2
i

Q{τ > t} + exp

1
2

t∑
i=1

λ2
i

 − 1+ Rem

 (15)

where,

| Rem| ≤
√
Q {τ ≤ t}

√
e2

∑t
i=1 λ

2
i − 2e

1
2

∑t
i=1 λ

2
i + 1 . (16)

For the further simplification, we supposeλi = λ for all i ≥ 1. It follows

Pr{τ > t} = e−
t
2λ

2

[
Q{τ > t} + exp

{
tλ2

2

}
− 1− Rem

]
(17)

and
| Rem| ≤

√
Q{τ ≤ t}

√
e2tλ2 − 2e

t
2λ

2
+ 1 . (18)

3 Numerical Analysis

In this section, we provide numerical analysis of our model. We use market data for calculating the
default probability Pr{τ > t}. Using corporate bond price data of individual companies, we calculate
representative values of Pr{τ > t} for each rating classes.

3.1 The Data

Data for this study consist of overnight call rates, government bonds and corporate bonds traded in
the markets between January 2003 and December 2012. We use the uncollateralized overnight call
rate published by Bank of Japan. Figure 1 shows the historical overnight call rate and the yields of
government bond between January 2003 and December 2012.
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Figure 1:Historical JGB and O/N interest rate
Note: Historical overnight call rate and the yields of government bond between January 2003 and December 2012. The blue
solid line shows the historical overnight call rate. Both red solid line and green dotted line show the JGB yields, the red solid
line is for JGBs whose remaining periods are 3 years and the dotted line is for JGBs whose remaining periods are 5 years.
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Rating Class Total Number Number Per Day Average Yield Average Term
AA 2475 891 0.0102 6.29
A 3362 795 0.00992 3.74

BBB 1908 334 0.0147 2.93

Table 1:Summary measures for corporate bonds
Note:The column labeled ”Total Number” displays the total number of corporate bonds traded in the market between January
2003 and December 2012. The column labeled ”Number Per Day” displays the average number of corporate bonds per day
traded in the market. The column labeled ”Average Yield” displays the average corporate bond yield. The column labeled
”Average Term” displays the average term to maturity of corporate bonds.

We also use straight bonds issued by AA, A, BBB credit rating companies. (We excluded con-
vertible bonds and subordinated bonds.) We reference ratings information provided by Rating and
Investment Information, Inc.(R&I). In Table 1, we summarize the properties of corporate bonds.

3.2 Implementing the historical volatility

The bond price data{ p(t, s), t = 0,1, . . . , s } are observed in the market. UsingN + 1 bond price
datap(t − N, s), p(t − (N − 1), s), . . . , p(t, s) , we calculate theN days historical volatilityσ(t, s) by
the following equation

σ(t, s) =

√√√
250

N − 1

N−1∑
i=0

(
R(t − i, s) − R̄t

)
(19)

R(t, s) = ln P(t, s) − ln P(t − 1, s), (20)

where

R̄t =
1
N

N−1∑
i=0

R(t − i, s).

We setN = 20 in the analysis below.
Furthermore,µ∗(t, s), 1+ r(t, s) are obtained from the government bond price data{ p∗(t, s), t =

0,1, . . . , s} and the overnight call rate, respectively. The market price of riskλ(t) is then calculated
as follows:

λ(t) =
µ∗(t, s) − (1+ r(t, s))

σ(t, s)
(21)

for eacht.

3.3 Strategy

We extract data in two different appointed periods from the historical price data of individual bonds.
The term to maturityu = s− t is the time remaining on a bondP(t, s)’s life. We set the following two
periods;

Period1 : 2years< u < 4years
Period2 : 4years< u < 6years
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Figure 2:Historical Average Spreads for 3 Rating Classes
Note: The average spreads of the corporate bonds and government bonds whose terms to the expiration are 0.5∼ 1.5 years.
The left graph is for AA rating class, the center is for A, the right is for BBB.

In this paper, we define ”yield spread”Υ as yield spread of corporate bond over government bond.

Υ = − 1
s− t

log

[
P(t, s)
P∗(t, s)

]
We show the arithmetic means of yield spreads for three rating classes in Figure 2

We find from Figure 2 that there are several big fluctuations on spreads. This may show the
possibility of existence of outlier data.

Now, We shall compute implied survival probabilityQ{τ > t}. We use Duffie & Singleton[1999]
framework to deriveQ{τ > t}. Under their framework, we assumeδt × P(τ−, t) is recovered at the
time of default, whereδt is the recovery rate andP(τ−, t) is the price of corporate bond just before
default. Assuming the hazard function to be nonrandom and the recovery rateδt at default to be
constant1 , implied survival function is

Q{τ > t} =
(
e−tΥ

) 1
1−δ
=

(
P(0, t)
P∗(0, t)

) 1
1−δ

3.4 Results of data analysis

Now, we use the model developed in Section 2 to estimate the default probabilities under real mea-
sure. The results are shown for 2 period groups.

First, We compute the market price of riskλt for each period groups. Table 2 is the statistics of
estimated market price of riskλt. Figure 3 shows the historicalλt estimate for each period group.

We observe from Table 2 and Figure 3 that the estimates of market price of riskλt vary widely.
The mean and the variance of the estimates for Period 1 are larger than those for Period 2. And the
distribution is right-skewed for Period 1, but left-skewed for Period 2.

Next, we computeP̃r{τ > t} andQ{τ > t} for each period groups. Figure 4 displays calculating
results ofP̃r{τ > t} andQ{τ > t} for 2 period groups.

As expected, the default probabilities under real measure are smaller than those under risk neutral
measure. The market price of riskλt has a large effect on the calculation of Pr{τ > t}

1As mentioned in Chapter1, under these conditions, implied default probability under the martingale measure and real
measure is equal. Although these assumptions seem contradictory to our model, we shall adopt the framework to compute
rough estimate.
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Mean SD Kurtness Skewness
Period 1 0.430 0.192 0.687 0.488
Period 2 0.328 0.125 -0.381 0.287

Table 2:Statistics for the market price of riskλt

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2
0

0
3

/2
/4

2
0

0
4

/2
/4

2
0

0
5

/2
/4

2
0

0
6

/2
/4

2
0

0
7

/2
/4

2
0

0
8

/2
/4

2
0

0
9

/2
/4

2
0

1
0

/2
/4

2
0

1
1

/2
/4

2
0

1
2

/2
/4

M
a

rk
e

t 
P

ri
ce

 o
f 

R
is

k
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2
0

0
3

/2
/4

2
0

0
4

/2
/4

2
0

0
5

/2
/4

2
0

0
6

/2
/4

2
0

0
7

/2
/4

2
0

0
8

/2
/4

2
0

0
9

/2
/4

2
0

1
0

/2
/4

2
0

1
1

/2
/4

2
0

1
2

/2
/4

M
a

rk
e

t 
P

ri
ce

 o
f 

R
is

k

Figure 3:The Market Price of Riskλt for Period1 and Period2.
Note: The graphs of the historical market price of riskλt in Eq.(21). The left graph is for period1 and the right is for period2.
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Figure 4:Estimates ofP̃r{τ ≤ t} andQ{τ ≤ t} for the Period 1 and 2.
Note: The graphs of the historical̃Pr{τ > t}(the orange line) andQ{τ > t}(the deep red line) in Eq.(17). The left graph is for
period1 and the right is for period2.
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Figure 5:The upper bound calculations of the remainder terms exp{− t
2λ

2}|Rem| using Schwartz inequality.
Note: The graphs of the historical upper bound calculations of the remainder terms exp{− t

2λ
2}|Rem| The left graph is for

period1 and the right is for period2.

We next evaluate the remainder term exp{− t
2λ

2}|Rem| by Schwartz inequality. Using Eq. (13),
we calcurate the upper bounds of exp{− t

2λ
2}|Rem|. Figure 5 shows the historical upper bound calcu-

lations of the remainder terms exp{− t
2λ

2}|Rem| for each period group.

3.5 Further Model Modification

To evaluate remainder terms more precisely, we apply Hölder’s inequality to (9), instead of Schwartz
inequality.

For somep, q ∈ [1,∞) with 1
p +

1
q = 1, we rewrite (16) as follows.

| Rem| ≤ EQ
I[τ≤t]

 ∣∣∣∣ exp

− t∑
i=1

λi(xi − λi)

 − 1
∣∣∣∣ 

 (22)

≤ (Q{τ ≤ t})
1
p

EQ
 ∣∣∣∣ exp

− t∑
i=1

λi(xi − λi)

 − 1
∣∣∣∣q


1
q

Since

EQ
exp

−a
t∑

i=1

λi(xi − λi)


 = exp

a2

2

t∑
i=1

λ2
i

 ,
for some nonnegative integera, we can compute the remainder term.

We analyze forq = 2,3, . . . ,10. We select a set ofp andq, which minimizes|Rem| in (22).
Figure 6 shows the remainder term changes when q changes from 2 to 7. The minimum|Rem|

values are attained whenq = 2 ∼ 6. Figure 7 shows the upper bound calculations of the remainder
terms exp{− t

2λ
2}|Rem| using Ḧolder’s inequality. The remainder terms using Hölder’s inequality

become smaller than those using Schwartz inequality, but there is little difference between them.
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Figure 6:The remainder term changes when q changes from 2 to 7.
Note: The graphs of the remainder term exp{− t

2λ
2}|Rem| using Ḧolder’s inequality when q changes from 2 to 7. The left

graph is for 2004/2/4 - 2004/2/26 and the right is for 2007/9/5-2007/9/28.
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Figure 7:The upper bound calculations of the remainder terms exp{− t
2λ

2}|Rem| using Ḧolder’s inequality.
Note: The graphs of the historical upper bound calculations of the remainder terms exp{− t

2λ
2}|Rem| for period2.
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4 Concluding Remarks

We present a model of deriving the default probability of a company from the market data. We use
the risk neutral pricing method directly and obtain the approximation formulae of real world default
probability. By using our model, we may compare the statistical default probability and the default
probability calculated from the market data. From the data analysis, the default probabilities under
real measure are estimated smaller than those under risk neutral measure as expected. Since the
market price of riskλ(t) plays a significant role in our model,λ(t) estimates have great influence on
the estimating results.
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