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tity of depositors. Using this approach, we show that e�cient contracts

are uniquely implementable with iterative deletions of strictly domi-
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1 Introduction

In a seminal banking study, Diamond and Dybvig (1983) show that a deposit

contract achieves a socially e�cient allocation, but may also bring about a

bank-run problem, which brings with it a Pareto ine�cient allocation. Follow-

ing the Diamond�Dybvig model, a number of studies in the extant literature

have addressed bank runs.1 Of these, at least some have modeled the causes

of bank runs.2

The present paper tackles the bank-run problem with a new approach:

namely, the introduction of a depositor's identity, as originally proposed by

Akerlof and Kranton (2000). Our main �nding then shows that the identity

of depositors solves the bank-run problem and the socially e�cient allocation

is then uniquely implementable in equilibrium.

Akerlof and Kranton (2000) de�ne �identity� as a person's sense of self.

According to their work, people belong to �social categories�. These social

categories in turn cultivate the identity of people, and most importantly, this

identity in�uences their decisions. In doing so, Akerlof and Kranton's (2000)

identity model yields a plausible explanation for many economic and social

situations, including gender discrimination in the workplace, the economics

of poverty and social exclusion, and other situations.

Following Akerlof and Kranton (2000), we divide depositors into one of

two categories�a socially conscious category and a self-interested category.

Depositors belonging to the former, whom we refer to as socially conscious

depositors, are assumed to desire a socially e�cient outcome for any deposit

contracts.3 Hence, if they do not need funds immediately, they hesitate to

withdraw their deposits before maturity because their early withdrawal acts

against social e�ciency. In order to represent such preferences, we assume

1This body of research splits bank runs into two types: self-ful�lling bank runs and
information-based bank runs. The current analysis and Diamond and Dybvig (1983) ad-
dress the former. For suitable studies of information-induced bank runs, see Gorton (1985),
Chari and Jagannathan (1988), Jacklin and Bhattacharya (1988), and Gorton and Pen-
nacchi (1990).

2See, for example, Postlewaite and Vives (1987), Engineer (1989), Nicoló (1996),
Cooper and Ross (1998), Green and Lin (2003), and Goldstein and Pauzner (2005).

3We implicitly assume that socially conscious depositors have a deep knowledge of
banking systems and understand the fragility of these systems.
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that the payo� of socially conscious depositors comprises their own monetary

interests and their identities, where we represent identity as a psychological

cost that indicates a loss in identity with early withdrawals. Alternatively,

depositors belonging to the self-interested category, whom we refer to as

self-interested depositors, have a preference that only represents their own

monetary interests.

Along with the basic Akerlof and Kranton (2000) framework, we consider

a novel aspect of identity, that is, the reduction of motive. In the social psy-

chology literature, using �eld experiments, Keizer et al. (2008) show that a

norm violation in a society by some people causes subsequent norm viola-

tions by other people.4 We incorporate this phenomenon into the concept of

identity as a reduction of psychological cost: that is, the psychological cost

of a depositor in early withdrawal declines if he/she recognizes that some

other depositors have already withdrawn their deposits before his/her �rst at-

tempt at early withdrawal. This is the key to our model. By utilizing this

cost-reduction property, we can design a payment mechanism that uniquely

implements e�cient contracts with iterative deletions of strictly dominated

strategies.5

It is noteworthy that we can obtain our a�rmative result with �small

identity,� that is, all we require are a few socially conscious depositors and

arbitrarily small psychological costs. Further, we also show that no mecha-

nism uniquely implements an e�cient deposit contract in ex post equilibrium

if there are only self-interested depositors. Thus, the results lead us to con-

sider the use of identity in designing bank deposit contracts.

The remainder of the paper is organized as follows. Section 2 describes our

basic framework. Section 3 de�nes the feasible set of outcomes available to

banks. We also discuss that e�cient contracts fail to be implementable in ex

4Wilson and Kelling (1982) propose the �broken windows theory,� which states that
people tend to become vandals when they observe small signs of social disorder. Keizer et
al. (2008) test their theory in �eld experiments and conclude that subjects are likely to
violate other norms once they observe the violation of one norm.

5Other than Akerlof and Kranton (2000), several studies of game-theoretic decision
making also take into account psychological preferences. See, for example, Geanakoplos et
al. (1989), Bernheim (1994), Dufwnberg and Lundholm (2001), Battigalli and Dufwnberg
(2009), Matsushima (2009), and Dufwenberg et al. (2011).
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post equilibrium. Section 4 de�nes the psychological cost of socially conscious

depositors. Section 5 presents the main result and Section 6 provides the

concluding remarks. The Appendix presents the proof of the propositions.

2 Banking model

The model setting follows Diamond and Dybvig (1983). Consider an econ-

omy with a single consumption good, a representative bank, and a continuum

of depositors. The economy comprises three periods: t0, t1, and t2. The set of

depositors are represented by D = [0, 1]. Each depositor has an endowment

of one unit of the consumption good, which he/she deposits in the represen-

tative bank in t0. At the commencement of period t1, some depositors face a

liquidity shock and obtain utility from consumption only in period t1, while

the remaining consumers can obtain utility from consumption in both period

t1 and period t2. We refer to the former type as early depositors and the

latter type as late depositors. We denote with ωi ∈ {e, l} a type of depositor

i, where e and l indicate early and late, respectively. Throughout this paper,

we assume that ωi is the private information of depositor i. We de�ne the

set of early and late depositors respectively as

D(e) = {i ∈ D | ωi = e}, D(l) = {i ∈ D | ωi = l}.

By de�nition, D = D(e) ∪D(l) and D(e) ∩D(l) = ∅. We then introduce a

parameter θ, de�ned as θ = L(D(e)), where L is the Lebesgue measure. Our

assumption implies that the bank does not know the accurate value of θ in

advance. For simplicity, we exclude nonmeasurable pro�les of the types.

Assumption 1 D(l) ̸= ∅ implies L(D(l)) > 0.

Assumption 1 implies that if depositor i �nds him/herself to be of type l,

then he/she knows that there are so many late depositors as to be θ < 1.

Indeed, Assumption 1 ensures that θ = 1 is equivalent to D(l) = ∅.6

6L(D(l)) = 0 implies D(l) = ∅, which means θ = 1. On the other hand, θ = 1 implies
L(D(e)) = 1, which means L(D(l)) = 0, hence D(l) = ∅.
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Let u denote depositors' utility function over consumption. We assume

that u is a von Neumann�Morgenstern utility function u : R+ → R+, which

is strictly increasing, strictly concave, and twice di�erentiable, and satis�es

u(0) = 0, limc→0 u
′(c) = ∞, limc→∞ u′(c) = 0, and −u′′(c)/u′(c) > 1 for all

c > 0.7

In relation to the consumption good, there are two investment technolo-

gies available to the bank. The �rst is a storage technology, which in t1

yields one unit of the consumption good per unit input in t0. The second

is a production technology, which in t2 yields R > 1 units of the good per

unit input in t0. Premature liquidation of the productive investment in t1 is

possible without any cost.8

We here de�ne e�cient deposit contracts. Suppose that the bank knows

θ in t0. Then, the bank can o�er an ex ante e�cient allocation to depositors,

which is de�ned as the solution of the following optimization problem:

max
ce,cl

θu(ce) + (1− θ)u(cl)

s.t. (1− θ)cl ≤ R(1− θce),
(1)

where the subscripts e and l denote early and late depositors, respectively.

In the optimum, the solution (c∗e(θ), c
∗
l (θ)) exists uniquely for each θ ∈ (0, 1)

and satis�es 1 < c∗e(θ) < c∗l (θ) < R for all θ ∈ (0, 1).9 Note that Equation (1)

shows that c∗e(1) = 1 and c∗l (0) = R, while c∗e(0) and c∗l (1) are indeterminate.

We de�ne a contract as a pair of contingent consumptions on a realized state

θ and denote it as c = (ce(·), cl(·)). A contract is said to be e�cient if for

all θ ∈ (0, 1), c(θ) is the solution to the problem in Equation (1) and if for

θ ∈ {0, 1}, ce(1) = 1 and cl(0) = R.

7Diamond and Dybvig (1983) assume u : R++ → R+, but not u(0) = 0. These
represent the only di�erences between their model and ours.

8Without liquidation costs, Cooper and Ross (1998) show that our bank-run problem
does not occur if depositors are not very risk-averse, that is, −u′′/u′ ≤ 1.

9For these derivations, see Diamond and Dybvig (1983).
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3 Material environment

3.1 Formalization

This section formally describes the environment in which we de�ne our bank-

ing model. First, we de�ne the set of all feasible outcomes, say Y . In order

to do so, we consider an individual provision function χk : D → R+, which is

Lebesgue measurable, and we identify χk(i) as the consumption of depositor

i in period tk. Let D(χk > x) denote a subset of depositors served by more

than x ≥ 0 in period tk. Then, we de�ne the set of feasible outcomes in t1

by

Y 1 ≡
{
χ1

∣∣∣ 0 ≤
∫
i∈D

χ1di ≤ 1

}
,

where
∫
i∈D χ1di =

∫∞
0

L(D(χ1 > x))dx. The set of feasible outcomes in t2

depends on the amount of withdrawn consumption in t1, or χ
1:

Y 2(χ1) ≡
{
χ2

∣∣∣ 0 ≤
∫
i∈D

χ2di ≤ R(1− z)

}
,

where z =
∫
i∈D χ1di. Let Y 2 =

∪
χ1∈Y 1 Y 2(χ1). We de�ne the set of feasible

outcomes Y as

Y =
{
(χ1, χ2) ∈ Y 1 × Y 2

∣∣∣ χ2 ∈ Y 2(χ1)
}
.

By de�nition, any contract c is subject to the feasible set Y . We refer

to the environment stated above and with Assumption 1 as the material

environment E .
Here, we make an assumption on the environment E .

Assumption 2 If χ̂1 ∈ Y 1 gives z = 1, then

Y 2(χ̂1) = {χ2 | ∀i, χ2(i) = 0}.

This assumption implies that the bank cannot pay anything in t2 if it returned

all assets to depositors in t1. Later in this section, we explain the signi�cance

of this assumption.
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In order to implement a contract, the bank selects a mechanism. The

mechanism asks each depositor in t1 (after he/she knows his/her own type) to

identify when he/she intends to consume. Letmi be the message of depositor

i and Mi be the set of all messages available to i. A pro�le of all depositors'

messages is described as m ∈ M ≡
∏

i∈D Mi. We write m = (m\mi) or

m = (mi,m−i) for tractability. Let g = (g1, g2) : M → Y be the outcome

function of a mechanism, where gk is a mapping such that g1 : M → Y 1 and

g2 : M → Y 2(g1). A mechanism is de�ned by a tuple of a message space M

and an outcome function g, denoted by M = (M, g).

A direct mechanism relative to an e�cient contract c∗, denoted byMc∗ =

(Md, gd), is such that Md
i = {e, l} for all i ∈ D, and gd1(m) and gd2(m)

determine individual provision functions respectively as

χ1(i) =

c∗e(θ̂) if mi = e

0 if mi = l
, χ2(i) =

0 if mi = e

c∗l (θ̂) if mi = l,

where θ̂ = L({i ∈ D | mi = e}). Note that we assume �no sequential ser-

vice,� that is, in each period, the mechanism can determine the consumption

provision to depositors after receiving messages.10

In the material environment E , we denote with Ui(g(m), ωi) the payo�

function of a type ωi depositor i under a message pro�le m, or

Ui(g(m), ωi) = u(χ1(i) + χ2(i)1ℓ), (2)

where 1ℓ is an indicator function such that 1ℓ = 1 if ωi = l, and 1ℓ = 0 if

ωi = e. Let G = ({Ui}i∈D,M, E) denote a game with a mechanism M on

the environment E . Let si denote the pure strategy of depositor i in G, or

si : {e, l} → Mi. We denote by ω the type pro�le of depositors, or ω ∈ {e, l}D.

De�nition 1 A strategy pro�le s is an ex post equilibrium in G if

∀i,∀ω, ∀mi : Ui(g(s(ω)), ωi) ≥ Ui(g(s(ω)\mi), ωi).
10Although Diamond and Dybvig (1983) assume sequential service, some subsequent

studies do consider deposit contract models without sequential service. See, for example,
Allen and Gale (1998, 2000).
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De�nition 2 An e�cient contract c∗ = (c∗e(·), c∗l (·)) is implementable in a

solution concept S if there exists a mechanism M = (M, g) such that for

any θ ∈ [0, 1] and for any pro�le s∗ of S-solution concept, outcome g(s∗(ω))

provides c∗e(θ) for all early depositors and c∗l (θ) for all late depositors.

Note that this de�nition requires full implementability in the sense that for

all θ and for all depositors i, if i is an early depositor, then χ1(i) = c∗e(θ); if

i is late, then χ2(i) = c∗l (θ).
11

Let Gc∗ denote a game with a direct mechanism Mc∗ in the material

environment E . We can easily check that the truth-telling strategy pro�le,

say s∗(ω) = ω, constitutes an ex post equilibrium in Gc∗ . To con�rm this, we

�rst note that the truth-telling strategy pro�le realizes θ̂ = θ. Then, we have

Ui(g(s
∗(ω)\e), e) = u(c∗e(θ)) > u(0) = Ui(g(s

∗(ω)\l), e) and Ui(g(s
∗(ω)\l), l)

= u(c∗l (θ)) > u(c∗e(θ)) = Ui(g(s
∗(ω)\e), l).12

However, there exists an ine�cient ex post equilibrium in Gc∗ , known as

the bank-run equilibrium, such that s′i(ωi) = e for all i and ωi. Under the

pro�le s′, we have

Ui(g(s
′(ω)\e), ωi) = u(c∗e(1)) = u(1) > u(0) = Ui(g(s

′(ω)\l), ωi)

for each ωi ∈ {e, l}. Hence the game Gc∗ de�ned with a direct mechanism

relative to any e�cient deposit contract c∗ has such an ine�cient equilibrium

outcome. In fact, we can show that any game G de�ned with any (indirect)

mechanism cannot uniquely implement e�cient deposit contracts in ex post

equilibrium.

Proposition 1 In the material environment E with Assumption 2, any e�-

cient contract cannot be implementable in ex post equilibrium.

Proof. See the Appendix. �

11Note that Assumption 1 excludes the case where there are in�nitely many zero-
measured late depositors while θ = 1. Nicoló (1996) investigates a run-proof mechanism
that uniquely achieves approximately e�cient outcomes with self-interested depositors.

12Owing to Assumption 1, any late depositor i need not wonder if θ = 1.
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That is, it is impossible to eliminate ine�cient ex post equilibrium out-

comes in our material environment E .13 Note that we obtain this impossibil-

ity result even if we assume an ideal environment with no sequential service.

Our impossible result is owing to Assumption 2, according to which noth-

ing can be provided from a zero-asset holding. One may consider that the

bank can o�er any positive consumption in period t2, even if θ̂ = 1 is ob-

served, because the measure of unserved depositors is zero. However, if we

assume that the bank can o�er positive consumption to zero-measured de-

positors, the bank-run problem itself disappears, including that in Diamond

and Dybvig (1983). In the Appendix, we derive the following statement as a

corollary to Proposition 1.

Corollary 1 Suppose that we put aside Assumption 2 in material environ-

ment E and suppose that an e�cient contract c∗ can provide c∗l (1) > 1 for a

single depositor i in t2. Then, the e�cient contract c∗ is implementable in

ex post equilibrium with the direct mechanism relative to c∗.

Hence Assumption 2 is necessary for the models analyzing bank-run prob-

lems.

3.2 The suspension of convertibility and deposit insur-

ance

Diamond and Dybvig (1983) show how to deal with the bank-run problem.

This section restates their idea with our notion of individual provision func-

tions. We use the essence of this section to show our main theorem.

If the bank knows θ exactly in advance, a mechanism with the following

individual provision functions implements an e�cient allocation in ex post

equilibrium (more precisely, in dominant strategies): Let Mi = {e, l} for all

13Green and Lin (2003) analyze a �nite-trader version of the Diamond�Dybvig model.
They show that e�cient contracts are uniquely implementable in strictly dominant strate-
gies. Their a�rmative result, however, hinges on the �niteness of depositors. If depositors
are �nite, the behavior of a single depositor can in�uence the outcome of a contract. As
a result, the bank can incentivize a depositor to reveal his/her true type.
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i ∈ D.

χ1(i) =

c∗e(θ) if mi = e and θ̂ ≤ θ

0 if mi = l or θ̂ > θ

χ2(i) =


0 if mi = e

c∗l (θ) +
(θ−θ̂)c∗e(θ)

1−θ̂
if mi = l and θ̂ < θ

c∗l (θ) if mi = l and θ̂ ≥ θ

(3)

The individual provision functions in (3) constitute a mechanism with sus-

pension of convertibility, as referred to in Diamond and Dybvig (1983). In-

deed, Diamond and Dybvig (1983) show that this mechanism can implement

e�cient allocations if θ is known.

If the bank does not know θ in advance, Diamond and Dybvig (1983)

propose the idea of using deposit insurance provided by the government.

They show that an e�cient contract is implementable in dominant strategies

if the government supports the bank with deposit insurance. The key is that

deposit insurance de�nitely expands the feasible set more than Y .

Here we brie�y explain the mechanism with deposit insurance as in Di-

amond and Dybvig (1983). Their mechanism, say M∗, comprises two com-

munication phases in t1, say, Day 1 and Day 2, and one such phase in t2, say

Day 3.

Depositor i's message takes a form mi = (m1
i ,m

2
i ,m

3
i ) ∈ {0, 1}3 = Mi,

where action mk
i = 1 implies that depositor i tenders a full withdrawal at

Day k, while mk
i = 0 implies that i does not tender any withdrawal at

Day k. Let χ(i, k) denote an individual provision function at Day k, where

χ1(i) = χ(i, 1) + χ(i, 2) and χ2(i) = χ(i, 3). In Day 1,

χ(i, 1) =

r if m1
i = 1

0 if m1
i = 0,
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where r ≥ 0 is a �xed provision of consumption. In Day 2,

χ(i, 2) =

−rτ(θ1) if m1
i = 1

0 otherwise,

where θ1 = L({i ∈ D | m1
i = 1}) and τ : [0, 1] → [0, 1] is the tax rate of the

government such that

τ(θ1) = 1− r−1c∗e(θ1).

In Day 3,

χ(i, 3) =


c∗l (θ1) if m1 = 0 and m3

i = 1 and if θ1 < 1

R if m1 = 0 and m3
i = 1 and if θ1 ≥ 1

0 otherwise.

In plain words, the government gives the bank r on Day 1 and the bank holds

1 + r − rθ1 at the end of Day 1. The government then collects θ1rτ(θ1) as a

tax from early depositors and requires the bank to repay (1− θ1)r+ θ1c
∗
e(θ1)

on Day 2. Hence the bank holds only 1 − θ1c
∗
e(θ1) and the government's

budget is balanced at the end of Day 2.

This mechanism gathers information about how many depositors wish to

withdraw early and uses it to determine the tax rate. Note that the tax rate

and the property of c∗e(·) imply 1 < c∗e(θ1) ≤ r for all θ1 ∈ (0, 1). Hence

it is obvious that the feasible set of outcomes is larger than our Y . The

after-tax values of consumption are c∗e(θ1) in t1 and c∗l (θ1) in t2. Because

c∗e(θ1) < c∗l (θ1) for all θ1 ∈ (0, 1) and c∗e(1) = 1 < R = χ(i, 3) for θ1 = 1, the

e�cient contract (c∗e(·), c∗l (·)) is implementable in dominant strategies.14

Finally, we make a remark on the mechanism explained above. It ap-

pears that the action m2
i is irrelevant. This is due to the assumption that

the range of τ is [0, 1]. To see this, suppose that r = 1 and consider the

following individual function: χ′(i, 2) = −τ(θ1) if m
1
i = m2

i = 1 and other-

wise χ′(i, 2) = 0. The mechanism de�ned with χ(i, 1), χ′(i, 2), and χ(i, 3)

14Note that we ignore Assumption 2 because there is �nancial support from the gov-
ernment, hence χ(i, 3) = R is possible.
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achieves the same outcome we stated above. We can interpret this modi�ed

mechanism as a current account on Day 1 but that it pays interest on Day 2.

However, we should recall that this interest-payment mechanism works well

because the government supports the bank with deposit insurance. Without

deposit insurance, Proposition 1 implies that the mechanism cannot prevent

bank runs.

4 Psychological environment

4.1 Identity

We now introduce the �identity� of depositors into the material environ-

ment E . Identity is based on social categories, C. In addition, there is

a prescription, P, for each social category that determines personal prin-

ciples.15 We let C = {α, β} ∋ cj, where α is the �socially conscious cat-

egory� of depositors and β is the �self-interested category� of depositors.

The socially conscious depositor desires a socially e�cient outcome from the

deposit contract. He/she also knows the fragility of the e�cient deposit

contract in the sense that a synchronized early withdrawal breaks the con-

tract and appreciates that such a breakdown implies ine�ciency in society.

Thus, the socially conscious depositors hesitate to withdraw their deposits

before maturity if they are late depositors.16 We give a prescription P∗ on

our material environment E such that a person in category α should avoid

early withdrawals when his/her type is late and that a person in category

β should behave self-interestedly. Hereafter, we refer to socially conscious

depositors as α depositors and self-interested depositors as β depositors. Let

15�Prescriptions P indicate the behavior appropriate for people in di�erent social cate-
gories in di�erent situations. The prescriptions may also describe an ideal for each category
in terms of physical characteristics and other attributes.� (Akerlof and Kranton (2000, p.
718)).

16Bankers, �nancial scholars, and those that have attended a lecture on the �microeco-
nomics of banking� at a university are typical persons included in our socially conscious
category of depositors. They are therefore su�ciently educated to be aware that syn-
chronized early withdrawal from a bank brings about a bad result as far as society is
concerned.
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D(α) = {j ∈ D | cj = α} denote the set of α depositors (the description

of the set of β depositors is similar). By de�nition, D = D(α) ∪ D(β) and

D(α)∩D(β) = ∅. Here, we make an assumption concerning the existence of

depositors to avoid a trivial issue.

Assumption 3 Let D(l, α) = D(l) ∩ D(α). (i) If θ ∈ [0, 1), then

L(D(l, α)) > 0. (ii) For all η ∈ {α, β}, if D(l, η) ̸= ∅, then L(D(l, η)) > 0.

Assumption 3(i) implies that if there are late depositors, some of them are

α-late. Assumption 3(ii) implies that if an α depositor turns out to be

type-l, then he/she is sure that there are many α-late depositors. Similar

to Assumption 1, Assumption 3 excludes a trivial case where the set of α-

late depositors has a zero Lebesgue measure. Notice that Assumption 3 also

implies that if a β depositor �nds him/herself to be of type-l, then he/she

is sure not only there are many type-l depositors, but also some of them are

α-late.

Given a mechanism M, the payo� function of depositor j is denoted as

Ûj(g(m), ωj, Ij),

where Ij = Ij(m,ωj; cj,P), which we refer to as the identity function.17 Here

we assume that the payo� function takes the following form:

Ûj(g(m), ωj, Ij) = Uj(g(m), ωj) + Ij(m,ωj; cj,P), (4)

where Uj(·, ·) is the same as in (2). We refer to the material environment in

which preferences are de�ned by (4) as the psychological environment Ep.

4.2 Psychological costs

We now introduce the result in Keizer et al. (2008) into our identity function.

The point is that once people observe a signal of norm violations, they are

17This modeling follows Akerlof and Kranton (2000). They additionally consider an-
other characteristic ϵj for the description of how close to (far from) the ideal of person j's
category, but we ignore such a characteristic because our main result is unchanged with
or without it.
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likely to violate norms. We model this phenomenon as a reduction of the

psychological cost against violating norms. In our banking model, the norm

corresponds to the prescription of categories. Here, we consider the following

psychological preference: if an α-late depositor i attempts early withdrawal,

then the depositor i incurs a cost against early withdrawal, but this cost

lessens if the depositor i recognizes that some other depositors have already

violated the norm.

In order to state this property formally and to use it e�ectively, we con-

sider a three-phase mechanismM∗ such as in Section 3.2. Then, we introduce

the number τi such that

τi ≡ min
{
k ∈ {1, 2, 3} | mk

i = 1
}
,

which is the smallest number of days for depositor i such that i tenders a

withdrawal. If mk
i = 0 for all k ∈ {1, 2, 3}, we let τi = 3.

Assumption 4 Given the prescription P∗ and M∗, for all θ ∈ [0, 1], j ∈ D,

and m ∈ M , the identity function of depositor j is as follows.

1. If m is such that τj = 3, then Ij(m, l;α,P∗) = 0.

2. If m is such that τj ≤ τi < 3 for all i ∈ D, then Ij(m, l;α,P∗) = −d1 <

0.

3. If m is such that there exists i ∈ D \ {j} such that τi < τj < 3, then

Ij(m, l;α,P∗) = −d2 > −d1 where d2 ≥ 0.

4. Ij(m, ·; β,P∗) ≡ 0.

Properties 1 and 2 in Assumption 4 imply that a late depositor i is better

o� with respect to the identity function if he/she does not tender an early

withdrawal. In addition, Properties 2 and 3 imply that a late depositor i

is better o� with respect to the identity function if he/she waits to tender

his/her early withdrawal until some other depositors tender a withdrawal.

Property 3 represents the cost reduction referred to above. Property 4 implies

that β depositors do not feel any psychological motive. Later, we will note
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that the costs (d1, d2) can be taken as being arbitrarily small as long as

d1 > d2 ≥ 0.

5 Main results

5.1 Solution concepts

Given a prescription P and a mechanism M, we consider a game Ĝ =

({Ûi}i∈D,M, Ep) under the psychological environment Ep. Let si(·) ≡
si(·; ci) : {e, l} → Mi denote a pure strategy of depositor i. We denote

by Si the set of pure strategies of depositor i.

A message m′
i is strictly dominated against M̂−i ⊂ M−i if, for all m−i ∈

M̂−i, there exists a message m′′
i that satis�es

Ûi(g(m
′′
i ,m−i), ωi, Ii) > Ûi(g(m

′
i,m−i), ωi, Ii).

A message mi is generated by Ŝi if there exist si ∈ Ŝi and ωi ∈ {e, l} such

that mi = si(ωi). Similarly, the set of messages M̂i is generated by Ŝi if

M̂i = {mi ∈ Mi | ∃si ∈ Ŝi, ∃ωi ∈ {e, l}, mi = si(ωi)}.

In the same way, we can de�ne a message pro�le m that is generated by Ŝ

and the set M̂−i that is generated by Ŝ−i.

A strategy s′i ∈ Si is strictly dominated against Ŝ−i ⊂ S−i if, for some

ωi, the message s′i(ωi) is strictly dominated against M̂−i that is generated

by Ŝ−i. Consider a sequence of sets indexed by k ∈ N ≡ {0, 1, 2, · · · }, or
(Sk

i )k∈N, such that (i) S0
i = Si, (ii) S

k
i ⊆ Sl

i if k ≥ l, and (iii) any s′i ∈ Sl
i\Sk

i ,

if it exists, is strictly dominated against Sl
−i. We refer to the sequence that

satis�es properties (i) � (iii) as a deletion sequence. A strategy s∗i is iteratively

undominated if there exists a deletion sequence such that s∗i ∈
∩

k∈N Sk
i .

In the next section, we show that an e�cient contract is implementable in

iteratively undominated strategies under psychological environment Ep, while
in the Appendix, we show that any e�cient contract cannot be implementable

in ex post equilibrium under material environment E .
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5.2 Implementation of e�cient contracts

We employ the three-phase mechanism M∗ referred to in Section 4.2. Let

Ĝ∗ = ({Ûi}i∈D,M∗, Ep) denote the game that we consider in this section.

The goal is to show that e�cient contracts are implementable in iteratively

undominated strategies on Ĝ∗. The outcome function of M∗ we de�ne plays

the following roles. On Day 1, the mechanism gathers information about θ,

say θ1; on Day 2, it provides e�cient consumption on the basis of θ1 for a

certain number of depositors; and on Day 3, it provides e�cient consumption

under θ1 for late depositors, but only as long as consumption remains. The

key in our mechanism is not to return all deposits at one time.

Theorem 1 In the psychological environment Ep with Assumptions 2, 3, and

4, any e�cient contract (c∗e(·), c∗l (·)) ∈ C is implementable in iteratively un-

dominated strategies, where

C = {c∗ | c∗e(0) ∈ (0, R)}.

Remark. The result is valid when the psychological costs d1 and d2 are

arbitrarily small as far as d1 > d2 ≥ 0.

Proof. We consider the following three-phase mechanism M∗.

Day 1: Let θ1 denote the number of depositors such that m1
i = 1, or

θ1 = L({i ∈ D | m1
i = 1}). For depositor i with m1

i = 1, the individual

provision function is

χ(i, 1) =

c∗e(θ1) with probability p

0 with probability 1− p,

where p ∈ (0, 1) is such that 2pu(R) < d1 − d2. For depositor i with m1
i = 0,

χ(i, 1) = 0.
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Day 2: Let θ2 denote the number of depositors such that m2
i = 1. For

any depositor i who is not served on Day 1, if mi = (1, 1, ·), then

χ(i, 2) =

c∗e(θ1) if θ2 ≤ (1− p)θ1

0 otherwise;

if mi = (0, 1, ·), then

χ(i, 2) =

c∗e(θ1)− ϵ if θ2 ≤ (1− p)θ1

0 otherwise,

where ϵ > 0 is small enough such that (1 − p)u(c∗e(θ1)) < u(c∗e(θ1) − ϵ). For

the other depositors, χ(i, 2) = 0.

Day 3: For any depositor i who is not served on Days 1 and 2, if m3
i = 1,

χ(i, 3) =

c∗l (θ1) if θ1 < 1

0 if θ1 = 1. (Because of Assumption 2.)

For the other cases, χ(i, 3) = 0.

We show that the strategy s∗i such that s∗i (l;α) = s∗i (l; β) = (0, 0, 1) and

s∗i (e;α) = s∗i (e; β) = (1, 1, 0) is an iteratively undominated strategy. The

pro�le of s∗i realizes θ1 = θ and each early and late depositor consumes c∗e(θ)

and c∗l (θ), respectively.

Let Γ(m) be an indicator function such that

Γ(m) =

1 if θ2 ≤ (1− p)θ1

0 otherwise.

(1. α-late depositors): Suppose that a depositor i �nds him/herself

α-late. First, suppose that depositor i expects θ1 > 0, that is, a lot of other

depositors tender a withdrawal on Day 1. If mi = (1, 1, ·), his/her payo� is

Ûi(g(m), l, Ii) = pu(c∗e(θ1)) + (1− p)Γ(m)u(c∗e(θ1))− d1.
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If depositor i changes his/her message to m̃i = (0, 1, ·), then

Ûi(g(m\m̃i), l, Ii) = Γ(m\m̃i)u(c
∗
e(θ1)− ϵ)− d2.

Because of the continuum depositors, Γ(m) = Γ(m\m̃i) and m−i determines

θ1 and θ2. Hence, for all m−i ∈ M−i, we obtain

Ûi(g(m), l, Ii)− Ûi(g(m\m̃i), l, Ii)

= p(1− Γ(m))u(c∗e(θ1)) + Γ(m)
(
u(c∗e(θ1))− u(c∗e(θ1)− ϵ)

)
− (d1 − d2)

< pu(c∗e(θ1)) + u(c∗e(θ1))− u(c∗e(θ1)− ϵ)− (d1 − d2)

< 2pu(c∗e(θ1))− (d1 − d2)

< 0,

(5)

where the �rst inequality is obtained by letting Γ(m) = 0 in the �rst term

and Γ(m) = 1 in the second term of the second line in Equation (5); the

second inequality is owing to the assumptions on p and ϵ in the Day 1 and 2

rules, respectively, and the third inequality results from the assumption on

p and d1 − d2, and the presumption that c∗e(θ1) < R for all θ1 ∈ [0, 1]. Thus,

the message mi = (1, 1, ·) cannot be optimal in this case.

Next, suppose that depositor i expects θ1 = 0, that is, no other depositors

or at most zero-measured depositors tender a withdrawal on Day 1. Then,

depositor i believes that there is no provision on Day 2 and that he/she can be

de�nitely served c∗l (0) = R on Day 3, which is greater than c∗e(0). Thus, the

message mi = (1, ·, ·) of any α-late depositor i is strictly dominated against

M−i. We de�ne a subset of strategies S1
i ≡ {si ∈ Si | si(l;α) = (0, ·, ·)}.

(2. β-late depositors): Suppose that S1 ≡
∏

i∈D S1
i is given and depos-

itor i �nds him/herself β-late. Then, by Assumption 3, depositor i deduces

that there are α-late depositors and θ1 < 1 is certain. Hence, he/she can def-

initely be served c∗l (θ1) on Day 3. Thus, for any β-late depositor i, the mes-

sages other than mi = (0, 0, 1) are strictly dominated against M1
−i generated

by S1
−i. We de�ne a subset of strategies S2

i ≡ {si ∈ S1
i | si(l; β) = (0, 0, 1)}.
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(3. α-late depositors): Suppose that S2 is given and depositor i �nds

him/herself α-late. Then, using the same reasoning as for β-late depositors,

the messages of α-late depositor i other than mi = (0, 0, 1) are strictly domi-

nated againstM2
−i. We de�ne a subset of strategies S3

i ≡ {si ∈ S2
i | si(l;α) =

(0, 0, 1)}.
(4. Early depositors): Suppose that S3 is given and depositor i �nds

him/herself early. If mi = (1, 1, ·), then his/her payo� is

pu(c∗e(θ1)) + (1− p)Γ(m)u(c∗e(θ1)).

If depositor i changes his/her message to m̃i = (0, 1, ·), then his/her payo�

is Γ(m\m̃i)u(c
∗
e(θ1)− ϵ). Then,

Ui(g(m), e)− Ui(g(m\m̃i), e)

= pu(c∗e(θ1)) (1− Γ(m)) + Γ(m)
(
u(c∗e(θ1))− u(c∗e(θ1)− ϵ)

)
.
(6)

Equation (6) is strictly positive regardless of Γ(m) because c∗e(θ1) > 0 for all

θ1 ∈ [0, 1]. Thus, the message m̃i = (0, 1, ·) of early depositor i is strictly

dominated by a message mi = (1, 1, ·) against M3
−i generated by S3

−i. Also, it

is easy to see that messagem′
i = (0, 0, ·) is strictly dominated bymi = (1, 1, ·).

We de�ne a subset of strategies S4
i ≡ {si ∈ S3

i | s1i (e; ·) = 1}. Any message

pro�le generated by S4 implies that (a) all early depositors choose m1
i = 1;

(b) all late depositors choose m1
i = m2

i = 0; and hence, (c) Γ(m) = 1 is

certain for all m ∈ M4. Hence, message mi = (1, 1, ·) brings payo� u(c∗e(θ1))

to early depositor i. Given the set S4, if depositor i changes his/her message

to m̃i = (1, 0, ·), then his/her payo� is pu(c∗e(θ1)). Thus, for early depositor

i, the message mi = (1, 0, ·) is strictly dominated against M4
−i.

We de�ne the set S5
i ≡ {si ∈ S4

i | si(e; ·) = (1, 1, ·)} = {si(e; ·) ∈
{(1, 1, 1), (1, 1, 0)}, si(l; ·) = (0, 0, 1)}. Consider the sequence of the sets of

strategies, say (Sk
i )k∈N, such that S0

i = Si; S
1
i , S

2
i , S

3
i , S

4, and S5 are the

same as de�ned above; Sk
i = S5

i for all k ≥ 5. Then, (Sk
i )k∈N is a deletion

sequence and any si ∈
∩

k∈N Sk
i = S5

i is an iteratively undominated strategy.

For any θ ∈ [0, 1] and any s ∈ S5, g(s(ω)) uniquely realizes the consumption
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c∗e(θ) for all early depositors and c∗l (θ) for all late depositors. �

An early depositor i is indi�erent as to whether si(e) = (1, 1, 1) or si(e) =

(1, 1, 0) if all late depositors follow the undominated action. Hence we obtain

the following fact as a corollary of Theorem 1.

Corollary 2 In the same environment as Theorem 1, any e�cient contract

c∗ ∈ C = {c∗ | c∗e(0) ∈ (0, R)} is implementable in ex post equilibrium.

Remember that any e�cient contract cannot be implementable in ex post

equilibrium if there are no socially conscious depositors.

One may wish to model the situation we consider as a dynamic game

because Keizer et al. (2008) report that people tend to violate norms if

they observe a sign of norm violations. It is easy to expand our model to a

dynamic situation. Suppose that at the commencement of Days 2 and 3 in the

mechanism M∗, the bank makes public θ1 and θ2, respectively. In the game

with this mechanism, we can show that e�cient contracts are implementable

in subgame perfect equilibrium.

Corollary 3 In the same environment as Theorem 1, any e�cient contract

c∗ ∈ C = {c∗ | c∗e(0) ∈ (0, R)} is implementable in subgame perfect equilib-

rium.

Proof. See the Appendix. �

5.3 Discussion

Our a�rmative result is valid for any d1 > 0. When d1 > 0, we can select a

p ∈ (0, 1) that meets 0 < 2pu(R) < d1 − d2. Hence the in�mum of cost d1 is

zero. This observation implies that the psychological costs can be arbitrarily

small when compared with the consumption of the initial endowment, that

is,

u(1)− d1 > u(0) = 0. (7)
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Equation (7) excludes a trivial case where α-late depositors do not tender any

early withdrawal before period t2 owing to a large psychological cost, which

appears to be a plausible assumption in our psychological model. This �small

cost allowance,� however, is not observed in the prototype model of Akerlof

and Kranton (2000, Section III), in which identity changes the decision of

economic agents only if identity occupies a large part of the utilities.

It is important for our a�rmative result to take p such that p ∈ (0, 1).

If p = 1, Day 2 has no meaning; the mechanism provides c∗e(θ1) on Day

1 and c∗l (θ1) or 0 on Day 3. In this case, however, the strategy pro�le s′,

such that s′i = (1, 1, 1) for all i ∈ D, constitutes an ex post equilibrium

if the psychological costs are su�ciently small to satisfy Equation (7). If

p = 0, depositors are not served on Day 1. In this case, Equation (6) can

be equal to zero if Γ(m) = 0, where Γ(m) = 0 is possible for some message

pro�les m generated by S3. Hence, we fail to obtain deletion sequences. The

nondegenerate probability p therefore plays a crucial role in our mechanism.

In plain words, the nondegenerate probability means that the bank should

not return the deposits at one time. Even if we use identity, a one-time whole

payback may cause self-ful�lling bank runs without large psychological costs.

Finally, we comment on the two-day separation in our payments. The

two-day separation can be interrupted as a �moratorium.� This moratorium

results from the assumption that banks do not know θ exactly in advance.

Because our mechanism is independent of the distribution of θ, this morato-

rium is required for all cases where the bank does not know θ exactly, even

if the bank has its expectation. The only exception, as we stated in Section

3.2, is where the bank knows θ exactly in advance.

6 Concluding remarks

This paper introduces the identity of agents into a deposit contract model

á la Diamond and Dybvig (1983) in an environment with uncertain states

without sequential service constraints. We establish that bank runs can be

prevented while achieving a fully e�cient outcome, which has been hitherto

thought to be impossible. Our a�rmative result is also obtained without any
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form of government intervention, such as deposit insurance. In addition, we

formalize the environment in which bank runs can occur and show that any

e�cient deposit contract cannot be implementable in ex post equilibrium if

all depositors are self-interested.

Identity plays a crucial role in our main result. This paper newly sheds

light on motivation loss in human psychology and introduces it into an iden-

tity model in the form of a reduction in psychological costs. By using this

motivation loss e�ectively, our a�rmative result holds even if their utilities

in the identity are arbitrarily small (as long as they are positive). Hence our

result establishes an example in which �small identity� drastically changes

a classic known result. This fact and our impossible result in the material

environment suggests that it is bene�cial to consider the psychological aspect

of depositors when designing a deposit contract.

7 Appendix

7.1 An impossibility result in material environment E

Pick an arbitrary e�cient contract c∗ and consider a game with the direct

mechanism relative to c∗, that is, Gc∗ . As shown in Section 3, the truth-

telling strategy pro�le s∗(ω) = ω constitutes an ex post equilibrium in Gc∗ .

Then, the e�cient contract c∗ is said to be ex post incentive compatible.

Because a pro�le of messages determines θ̂, we hereafter denote an allocation

as c∗(s(ω)) = (c∗e(s(ω)), c
∗
l (s(ω))).

We know that there exists an ine�cient ex post equilibrium in Gc∗ , but

such an equilibrium pro�le may be eliminated by considering a game with

some indirect mechanism. If c∗ is implementable in ex post equilibrium (with

some indirect mechanism), then it is known that c∗ necessarily satis�es the

following ex post monotonicity condition (Bergemann and Morris, 2008).

De�nition 3 An e�cient contract c∗ satis�es ex post monotonicity if, for

all type reporting strategy pro�le s in Gc∗, if c∗ ◦ s ̸= c∗ ◦ s∗, then there exist
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i ∈ D, ω ∈ {e, l}D, and yi ∈ Y , such that

Ui(yi, ωi) > Ui(c
∗ ◦ s(ω), ωi), (8)

while for all ω′
i ∈ {e, l},

Ui(c
∗(s∗(ω)\ω′

i), ω
′
i) ≥ Ui(yi, ω

′
i). (9)

Claim 1. The e�cient contract c∗ does not satisfy ex post monotonicity.

To con�rm this, consider an ine�cient strategy pro�le s′ such that s′i(ωi) = e

for all i ∈ D and ωi ∈ {e, l}, which realizes θ̂ = 1 for all ω. Then, c∗(s′(ω)) =

(1, 0) for all ω because of Assumption 2. Thus the outcome yi in Equation

(8) must be yi = χ1(i) ∈ Y 1 and yi > 1. However, there exists a state θ′

such that θ′ < 1 and yi > c∗e(θ
′) > 1 because limθ→1 c

∗
e(θ) = c∗e(1) = 1.

Hence, depositor i prefers yi to c∗e(θ
′) whenever his/her type is early, which

contradicts Equation (9) when ω′
i = e and ω = (ω′

i, ω−i) realizes θ
′.

Claim 1 implies that any e�cient contract cannot be ex post imple-

mentable, hence we obtain a proof of Proposition 1. It is obvious that this

impossibility hinges on Assumption 2. However, without Assumption 2, any

banking model in the material environment E , including Diamond and Dyb-

vig (1983), does not have ine�cient bank-run outcomes. To see this, suppose

that we discard Assumption 2 and consider the following assumption.

Assumption 5 For all A ⊂ D(l)\∅ and for any provision function χ̂1 ∈ Y 1

that gives z = 1, if L(A) = 0, then there exists χ2 ∈ Y 2(χ̂1) such that

χ2(r) > 1 for all r ∈ A.

Claim 2. If we make Assumption 5 instead of Assumption 2, then there

is no bank-run equilibrium in material environment E. To see this, we pick

an individual provision function χ2 such that χ2(i) > 1 for any depositor

i ∈ A and identify χ2(i) with yi of Equation (8). In order to make yi satisfy

Equation (9) also, we must have c∗l (1) ≥ χ2(i). Hence, an e�cient contract

c∗ must satisfy c∗l (1) > 1. Because 1 = c∗e(1), the e�cient contract c∗ itself

incentivizes depositor i to delay his/her withdrawal whenever his/her type is

late, even if all the depositors other than i rush into the bank in t1. Because
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we can take A arbitrarily, any late depositor has an unilateral deviation in-

centive from ine�cient strategy pro�les in Gc∗ . Thus, any ine�cient strategy

pro�le in Gc∗ under Assumption 2 is no longer ex post equilibrium.

7.2 Proof of Corollary 3

The strategies in our mechanismM∗ with public information announcements

depends on the information θ1 and θ2. For an arbitrary depositor i, given ci

and ωi, consider functions s
k
i : Hk → Mi for k = 1, 2, 3, where Hk denotes a

set of histories such that H1 = {∅} and Hk+1 = Hk × (Mi × [0, 1]), where

Mi × [0, 1] ∋ (mi, θk) for k = 1, 2. Let si : {e, l} × ∪3
k=1Hk → Mi denote the

pure strategy of depositor i. We de�ne functions si|h1 = s1i , si|h2 : ∪2
k=1Hk →

Mi, and si|h3 : H1 → Mi, which induce an action plan after an arbitrary

history is observed.

De�nition 4 A strategy pro�le s is a subgame perfect equilibrium in Ĝ if

∀i, ∀ω, ∀hk,∀s′i|hk : Ui(g(s|hk), ωi) ≥ Ui(g(s|hk\s′i|hk), ωi).

We consider a state-dependent strategy σi such that (1) if i is late, then

m1
i = 0 and on Days 2 and 3, m2

i = 0 and m3
i = 1 respectively if and only

if θ1 < 1 is observed, otherwise m2
i = 1; (2) if i is early, then m1

i = m2
i = 1.

We �rst show that σ constitutes a subgame perfect equilibrium.

(Day 3): There remain only late depositors who have not been served

until now. If a depositor i observes θ1 < 1, then m3
i = 1 is a dominant

strategy. If θ1 = 1, then it is indi�erent for depositor i to choose m3
i = 1

or m3
i = 0. Hence si|h3(∅) = 1 is optimal for all h3 if i is late and it brings

his/her a payo� ui(c
∗
l (θ1)).

(Day 2): For an early depositor j, m2
j = 1 is a (weakly) dominant

strategy regardless of θ1. For a late depositor i, if θ1 < 1, then m2
i = 0 is

optimal; if θ1 = 1, then m2
i = 1 is optimal.

(Day 1): For an early depositor j, if m1
j = 1, then he/she gets

pu(c∗e(θ1))+(1−p)Γ(m)u(c∗e(θ1)); ifm
1
j = 0, pu(c∗e(θ1))+(1−p)Γ(m)u(c∗e(θ1)−
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ϵ). Hence m1
j = 1 is a (weakly) dominant strategy. A late depositor i knows

θ < 1 because of Assumption 3. Given σ−i, m
1
i = 0 is optimal.

These observations imply that σ constitutes a subgame perfect equilib-

rium. Next we show that there is no other subgame perfect equilibrium in

this game. This is quite simple. Note that late depositors obtain the con-

sumption c∗l (θ1) that is preferable to c∗e(θ1) as long as θ1 < 1. Hence we

only have to show that there is no optimal strategy such that a late depos-

itor chooses m1
i = 1. In order to show that, we can apply the reasoning in

the proof of Theorem 1, where m1
i = 1 is strictly dominated for any α-late

depositor i, which implies θ1 < 1 is assured.

REFERENCES

[1] Akerlof, G.A., Kranton, R.E., 2000. Economics and Identity. Quarterly

Journal of Economics 115, 715�53.

[2] Allen, F., Gale, D., 1998. Optimal �nancial crises. Journal of Finance

53, 1245�1284.

[3] Allen, F., Gale, D., 2000. Financial contagion. Journal of Political Econ-

omy 108, 1�33.

[4] Battigalli, P., Dufwnberg, M., 2009. Dynamic psychological games. Jour-

nal of Economic Theory 144, 1�35.

[5] Bergemann, D., Morris, S., 2008. Ex post implementation. Games and

Economic Behavior 63, 527�566.

[6] Bernheim, D., 1994. A theory of conformity. Journal of Political Econ-

omy 102, 841�877.

[7] Chari, V., Jagannathan, R., 1988. Banking panics, information, and

rational expectations equilibrium. Journal of Finance 42, 749-763.

[8] Cooper, R., Ross, T., 1998. Bank runs: liquidity costs and investment

distortions. Journal of Monetary Economics 41, 27�38.

25



[9] Dufwenberg, M., �Gachter, S., Hennig-Schmidt, H., 2011. The framing of

games and the psychology of play. Games and Economic Behavior 73,

459�478.

[10] Dufwnberg, M., Lundholm, M., 2001. Social norm and moral hazard.

Economic Journal 111, 506�525.

[11] Diamond, D., Dybvig, P., 1983. Bank runs, deposit insurance, and liq-

uidity. Journal of Political Economy 91, 401�419.

[12] Engineer, M. 1989. Bank runs and the suspension of deposit convertibil-

ity. Journal of Monetary Economics 24, 443�454.

[13] Geanakoplos, J., Pearce, D., Stacchetti, E., 1989. Psychological games

and sequential rationality. Games and Economic Behavior 1, 60�79.

[14] Goldstein, I., Pauzner, A., 2005. Demand-deposit contracts and the

probability of bank runs. Journal of Finance 60, 1293�1327.

[15] Gorton, G., 1985. Bank suspension of convertibility. Journal of Monetary

Economics 15, 177�193.

[16] Gorton, G., and Pennacchi, G., 1990. Financial intermediaries and liq-

uidity creation. Journal of Finance 45, 49�71.

[17] Green, E., Lin, P., 2003. Implementing e�cient allocation in a model of

�nancial intermediation. Journal of Economic Theory 109, 1�23.

[18] Jacklin, C., Bhattacharya, S., 1988. Distinguishing panics and

information-based bank runs: welfare and policy implications. Journal

of Political Economy 96, 568�592.

[19] Keizer, K., Lindenberg, S., Steg, L., 2008. The spreading of disorder.

Science 322, 1681�1685.

[20] Matsushima, H., 2009. Implementation and mind control. CIRJE-F-673,

The University of Tokyo.

URL http://www.cirje.e.u-tokyo.ac.jp/research/dp/2009/2009cf673ab.html

26



[21] Nicoló, G.D., 1996. Run-proof banking without suspension or deposit

insurance. Journal of Monetary Economics 38, 377�390.

[22] Wilson, J., Kelling, G., 1982. Broken windows: the police and neighbor-

hood safety. The Atlantic Monthly, March.

URL http://www.theatlantic.com/doc/198203/broken-windows

27


