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ABSTRACT

This paper shows that it is possible to uniquely implement the

e�cient consumption of a �nancial intermediation model with a liqui-

dation cost. While taking into account a sequential service constraint,

I formulate a bank provision scheme to achieve the e�cient outcome

while preventing bank runs. The provision scheme and the obtained

contract depend on neither liquidation costs nor the relative risk aver-

sion coe�cients of depositors.

1 Introduction

The prevention of bank runs is practically and theoretically the central issue

in the context of �nancial intermediation by banks. In the model of �nancial

*This work was supported by MEXT Grant-in-Aid for Research Activity Start-up
(22830103). yohashi@aoni.waseda.jp
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intermediation, we are interested in whether an e�cient outcome can be

achieved while preventing bank runs. However, many studies have shown

negative results in this regard.1

This paper revisits a contract design problem of deposit contracts by

focusing on a payment policy by banks. The main result states that there

exists a deposit contract that can achieve an ex ante e�cient outcome while

preventing bank runs without deposit insurance2.

The key for this a�rmative result lies in provision scheme design, where

a provision scheme corresponds to a bank payment policy. While taking

into account a sequential service constraint (also known as a ��rst-come,

�rst-served� constraint), I construct a provision scheme that corrects the

information on the number of depositors that have been served so far and

re�ects the information in current payments. In a game induced by the

provision scheme, I show that an e�cient outcome is uniquely achieved in a

strictly �self-selective� strategy equilibrium.

The provision scheme I propose imposes a refund cap on one-time with-

drawals. Such a cap allows banks to acquire information on how many depos-

itors urgently need consumption, without fear for bankruptcy. On the basis

of this the information, banks provide e�cient consumption. As a result,

the demand deposit contract must be similar to a time deposit contract in

that it has a refund cap when we seek to achieve the e�cient outcome while

preventing bank runs.

This paper contributes to the literature on run-preventing contracts, a

concept introduced by Cooper and Ross (1998). A run-preventing contract

ensures incentive compatibility for all depositors. Cooper and Ross (1998)

extend the Diamond�Dybvig (1983) model and investigate when a contract

has the run-preventing property. They state that an e�cient contract can

1For example, Diamond and Dybvig (1983) show that a deposit freeze policy can
prevent bank runs. However, Engineer (1989) shows that such a deposit freeze policy fails
to work when there is uncertainty on depositors' type. Also, Ennis and Keister (2009)
show that a bank cannot ensure the prevention of bank runs if the bank's deposit freeze
policy takes into account ex post e�ciency.

2Diamond and Dybvig (1983) show that deposit insurance solves the unique imple-
mentation problem. However, the deposit insurance causes a moral hazard problem. See
Cooper and Ross (2002) and Martin (2006), for instance.
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be a run-preventing contract if both the relative risk aversion coe�cient of

depositors and a liquidation cost for a long-term investment are su�ciently

small. These restriction can be attributed to the fact that they only con-

sider a �constant� contract, that is, a contract that aims to provide a certain

outcome regardless of the number of withdrawal tenders. In contrast, in this

paper, I consider a wider class of contracts and show that a well-designed

provision scheme can implement a contract that achieves the e�cient out-

come in equilibrium, regardless of the relative risk aversion coe�cients and

liquidation costs.

This paper is organized as follows. Section 2 sets up the basic framework

of the model on the basis of Cooper and Ross (1998). Section 3 introduces

several de�nitions, including that of a provision scheme and a sequential

service constraint. Section 4 presents the main result. I also refer to a

robustness property on the obtained contract with our provision scheme by

comparing it with an equilibrium outcome under a �deposit freeze� policy.

Section 5 presents the concluding remarks. All proofs are presented in the

Appendix.

2 Preliminaries

The model used in the paper is based on the Cooper�Ross (1998) model.

Consider an economy with a single consumption good, a representative bank,

and depositors. The bank implicitly faces competition with other banks,

and its pro�t is assumed to be zero. The economy has three event phases:

E0, E1, and E2. The consumption good has two opportunities: storage and

investment. Storage yields one unit of the consumption good in E1 per unit

input in E0. Investment yields R > 1 units of the consumption at a maturity

time in E2 per unit input in E0. Premature liquidation of the investment

yields 1− κ in E1 per unit input in E0, where κ ∈ [0, 1].

Depositors are identical in E0 and are represented by the continuum I :=

[0, 1]. Each depositor has one unit consumption good as an endowment,

which it deposits in the representative bank in E0. Some time after depositing

and investing, say, at the beginning of E1, a fraction of the depositors, θ ∈
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(0, 1), which we call early depositors, face a liquidity shock. The remaining

depositors, 1− θ, which we call late depositors, do not face a liquidity shock.

We refer to θ, which I assume to be non-stochastic, as a type state. Early

depositors must exit from the market by a time T in E1, but late depositors

can exist in the market after T and the maturity time in E2.

Whether a depositor is early or late is his private information. Early

depositors value consumption in E1, while late depositors value consumption

in both E1 and E2. Let cn denote the consumption of depositors in En

(n = 1, 2). The payo�s of the depositor i are given by

Ui(c1, c2) =

u(c1) if i is an early depositor

u(c1 + c2) if i is a late consumer,
(1)

where u in (1) is a von Neumann�Morgenstern utility function u : R+ → R+,

which is strictly increasing, strictly concave, and twice di�erentiable, and

which satis�es u(0) = 0 and limc→0 u
′(c) = ∞.

The bank chooses a portfolio (ψE, ψL) that maximizes the expected social

welfare, where subscript E (L) means early (late). The ex ante e�cient

consumption is de�ned as the solution of the following optimization problem:

max
cE ,cL,ψE ,ψL

θu(cE) + (1− θ)u(cL)

s.t. ψE + ψL = 1

θcE ≤ ψE

(1− θ̄)cL ≤ RψL

(2)

In the optimum, we obtain ψ∗
E = θc∗E, c

∗
L = R(1−θc∗E)(1−θ)−1, and c∗E < c∗L.

3 De�nitions

Our goal is to show that the optimal outcome in (2) is uniquely achieved.

We focus on the incentives of depositors in E1 without loss of generality. For

simplicity, let us denote E1 = [0, T ) and E2 = [T, T ′], where t = 0 refers

to the time of liquidity shock and t = T refers to the time by which early

4



depositors have completely exited from the market and the maturity time of

the investment.

Provision scheme

A provision scheme describes when and how much depositors are served by

the bank. To de�ne such a scheme, I �rst describe the action of the depositors.

We denote the action of a depositor i by a function mi : [0, T
′] → {0, 1},

where mi(t) = 1 (0) means that depositor i tenders (does not tender) a full

withdrawal at time t. Let us denotemi = (mi(t))t∈[0,T ′] andm = (mi)i∈I . We

denote byMi the set of all possible actions of depositor i. Let gi(m, t) denote

the provision of the good for depositor i at time t, where gi :
∏

i∈IMi×[0, 1] →
R+. We refer to M = (Mi, gi(·, ·))i∈I as a provision scheme. A provision

scheme induces a game among depositors. Let si : {E,L} → Mi denote

a strategy of depositor i. Strategy s∗i is a strictly self-selective strategy if

depositor i's type is x ∈ {E,L}, then

Ui(gi(s
∗
i (x),m−i, t)) ≥ Ui(gi(mi,m−i, t)) (3)

for all mi ∈ Mi, m−i ∈ M−i, and t ∈ [0, T ′], and if mi = s∗i (y), where

y ∈ {E,L}\{x}, then (3) holds strictly for all m−i ∈ M−i and t ∈ [0, T ′].

A strategy pro�le of strictly self-selective strategies is said to be a strictly

self-selective strategy pro�le. By de�nition, a strictly self-selective strategy

pro�le constitutes an (ex-post) Nash equilibrium.

Sequential service constraint

Sequential service in this paper means that the provision from the bank at

time t can only depend on the information on what amount the bank has

served by t and not on any future information. To begin with, I make the

following assumption.

Assumption 1 For each t ∈ [0, T ′], if there exists a depositor i such that

gi(·, t) > 0, then gj(·, t) = 0 for all j ∈ I\{i}.
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This assumption states that the bank can pay to at most a single depositor

at each time. In addition, I prohibit any �retroactive levy� of banks; that is,

banks cannot make depositors pay back any served consumption.

Assumption 2 The bank is subject to a no-retroactive-levies constraint: If

gi(·, t) = ct > 0, depositor i consumes ct at time t.

I describe the history (i.e., a sequence of messages) of a message mi from

time 0 to k as mi[k] ≡ (mi(t))t∈[0,k]. Let Ψ(t) denote the set of the depositors

who have already been served positive provision from the bank by time t:

Ψ(t) ≡ {j ∈ I | ∃t′ < t, gj(·, t′) > 0}.

We introduce a sequential service constraint into provision functions {gi}i∈I
such that the provision at time t does not depend on any messages after time

t.

De�nition 1 (Sequential service constraint) For each i ∈ I, m ∈
∏

i∈IMi,

and t ∈ [0, T ′],

gi(m, t) = gi(mi[t], (mj[t])j∈Ψ(t), t). (4)

This sequential service constraint implies that the bank should provide con-

sumption contingent only on the number of withdrawals that have occurred

so far.

We should note that the sequential service constraint with Assumption 1

implies that the bank cannot know immediately how many depositors tender

at time 0. Suppose that many depositors tender a full withdrawal at time

0. Because of Assumption 1, the bank can provide consumption to a single

depositor at time 0 and all the information available to the bank at time 0

is that there is one depositor who tenders a full withdrawal. Furthermore,

Assumption 2 makes it impossible for the bank to get the consumption back

from early depositors.

3.1 Run-preventing contracts and e�ciency

Let c = (cE(·), cL(·)) denote a contract. We refer to c(θ) = (cE(θ), cL(θ))

as consumption for the realization θ. Let c∗q denote the solution of (2) for
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q ∈ {E,L} for tractability. Diamond and Dybvig (1983) consider the contract

such that cE(θ̂) = c∗E and cL(θ̂) = max{R(1 − θ̂c∗E)(1 − θ̂)−1, 0} for any

realization θ̂ ∈ [0, 1], where

θ̂ =

∫
{j|mj(0)=1}

L(dj)

with the Lebesgue measure L. As is widely known, this contract has an

ine�cient bank run equilibrium.

Cooper and Ross (1998), on the other hand, introduce the concept of

run-preventing contracts. A run-preventing contract is supposed to ensure

incentive compatibility for all depositors under all realizations of type states.

In this paper, I de�ne a run-preventing contract as follows.

De�nition 2 A contract c is said to be a run-preventing contract (RPC)

if there exists a provision scheme M that makes c(θ) a unique equilibrium

outcome.

By the revelation principle (e.g., Mas-Colell et al.(1995)), any RPC c should

satisfy cE(θ̂) ≤ cL(θ̂) for all θ̂ ∈ [0, 1].

Cooper and Ross (1998) solely consider a �constant� contract. They show

that a constant RPC can achieve the e�cient outcome only if the liquidation

cost and the relative risk aversion coe�cient of depositors are su�ciently

small. To see this, we �rst note that a constant RPC c̄ = (c̄E, c̄L) requires

c̄E ≤ 1− κψL for all ψL ∈ [0, 1], which is equivalent to ψE + (1− κ)ψL ≥ c̄E.

Hence, an e�cient constant RPC c̄∗ = (c̄∗E, c̄
∗
L) must satisfy

c̄∗L =
R(1− θc̄∗E)

1− θ
, c̄∗E ≤ 1− κ

1− κθ
. (5)

For a given κ ∈ (0, 1) and θ ∈ (0, 1), (5) implies that c̄∗E < 1, which is satis�ed

only if the relative risk aversion coe�cient of depositors is su�ciently small.3

Furthermore, even if the relative risk aversion coe�cient is less than unity,

e�cient contracts are no longer RPCs whenever κ = 1, because the e�cient

3Diamond and Dybvig (1983) show that c∗E > 1 whenever the relative risk aversion
coe�cient is larger than unity.
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outcome must satisfy c∗E > 0.4 This result is pessimistic because the e�cient

consumption of the Diamond�Dybvig model must satisfy c∗E > 1. Hence

their optimal constant RPC cannot coincide with any e�cient outcome in

the Diamond�Dybvig model.5

4 Results

4.1 RPC with e�cient outcome

We design an RPC that achieves the e�cient consumption in equilibrium.

First, we consider the consumption bundle (ĉE(θ̂), ĉL(θ̂)), which is the solu-

tion of the following problem:

max
cE ,cL

θ̂u(cE) + (1− θ̂)u(cL)

s.t. θ̂cE ≤ θc∗E

(1− θ̂)cL ≤ R(1− θc∗E) + θc∗E − θ̂cE.

(6)

Lemma 1 We obtain ĉE(θ̂) < c∗E < c∗L < ĉL(θ̂) for all θ̂ > θ.

Proof. See the Appendix. ■

Next, we de�ne a contract by using (ĉE(·), ĉL(·)). Let c∗∗ = (c∗∗E (·), c∗∗L (·))
denote the contract de�ned as

c∗∗E (θ̂) =

c∗E if θ̂ ≤ θ

ĉE(θ̂) if θ̂ > θ
, c∗∗L (θ̂) =

c′L(θ̂) if θ̂ ≤ θ

ĉL(θ̂) if θ̂ > θ
(7)

where (ĉE(θ̂), ĉL(θ̂)) is the same one in (6) and (1 − θ̂)c′L(θ̂) = (1 − θ)c∗L +

(θ − θ̂)c∗E. This contract c
∗∗ satis�es c∗∗E (θ̂) < c∗∗L (θ̂) for all θ̂ ∈ [0, 1]. To see

4This statement is Proposition 2 of Cooper and Ross (1998).
5Indeed, Cooper and Ross (1998) state that the optimal RPC in the Diamond�Dybvig

model is c = (1, R), which is an e�cient outcome for the case of the relative risk aversion
coe�cient being 1. When considering a �nite-depositors version of the Diamond�Dybvig
model, Green and Lin (2003) show that the optimal RPC uniquely achieves the e�cient
outcome if we ignore sequential service constraints.
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this, we only have to show that c′L(θ̂) > c∗E for all θ̂ ≤ θ. The fact c∗L > c∗E
implies that

(1− θ̂)c′L(θ̂) = (1− θ)c∗L + (θ − θ̂)c∗E

> (1− θ)c∗E + (θ − θ̂)c∗E

= (1− θ̂)c∗E.

The contract c∗∗ proves to be an RPC.

Proposition 1 The contract c∗∗ is an RPC such that the e�cient consump-

tion c∗∗(θ) = (c∗E, c
∗
L) can be achieved in strictly self-selective strategies for

all relative risk aversion coe�cients and liquidation costs.

Proof. See the Appendix. (I provide a sketch of proof in the subsequent

paragraph.) ■
The contract c∗∗ has three important characteristics. First, this is an RPC.

Second, the unique equilibrium outcome is e�cient. Third, the contract is

�parameter-free�; that is, it is independent of the relative risk aversion coef-

�cients and liquidation costs. Although the third property directly follows

from the de�nition of c∗∗, we can show that a provision scheme for c∗∗ to be

implemented is also parameter-free.

I provide an intuitive explanation of our provision scheme. In order to

avoid bankruptcy, the provision scheme sets a refund cap on one-time with-

drawals during some time span [0, K) with K < T . Let cE denote such a

refund cap. Early depositors tender a full withdrawal at time 0 but almost

all of them must stand in line waiting to be served cE < 1 due to Assumption

1. Any early withdrawal tender can be served cE in [0, K) since there is a

bijection from I to [0, K). The bank counts the number of early depositors

while providing cE. Then, in [K,T ), the scheme provides c∗∗(θ̂)− cE to the

early withdrawal tenders who get cE, where θ̂ is the counted number of early

depositors in [0, K). Hence all θ̂ early withdrawal tenders can be served

c∗∗(θ̂) by time T . Since c∗∗E (θ̂) < c∗∗L (θ̂), any late depositor does not tender a

full withdrawal in E1.
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The most important role in our provision scheme is the refund cap cE.

We can show that there exists cE > 0 such that c∗∗(θ̂) − cE ≥ 0 for all

θ̂ ∈ [0, 1],6 so that our provision scheme is consistent with Assumption 2.

In practice, this refund cap corresponds to the view that the bank should

not accept a large number of full withdrawal tenders at one time lest the

bank goes bankrupt. The refund cap cE makes deposit contracts have the

run-preventing property and helps the bank provide e�cient consumption.

Thus, our result shows that the demand deposit contract must be similar to

a time deposit contract when we seek to achieve both the e�ciency and the

run-preventing property.

4.1.1 Example

Suppose that the depositors have the following utility function:

u(c) =
c1−γ

1− γ
, (8)

where γ > 0 is their relative risk aversion coe�cient. In this case, it is easily

derived that the solution of (2) is

c∗E =
1

θ + (1− θ)R
1−γ
γ

, c∗L = R
1
γ c∗E. (9)

In the optimum of problem (6) with utility function (8), we obtain

ĉE =
ψ∗
E

θ̂
, ĉL =

Rψ∗
L

1− θ̂
,

where

ψ∗
E = θc∗E, ψ∗

L = (1− θ)R
1−γ
γ c∗E.

6See the Appendix.
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Then,

ĉL − ĉE =
c∗E

(
θ(1− θ)R

1
γ − θ(1− θ)

)
θ̂(1− θ̂)

>
c∗Eθ(1− θ)

(
R

1
γ − 1

)
θ̂(1− θ̂)

> 0.

Further, since cE = ψ∗
E > 0 and cE(θ̂) − cE = (1 − θ̂)ψ∗

E θ̂
−1 > 0 for all

θ̂ ∈ [θ, 1), our provision function ensures the incentive compatibility for early

depositors. Note also that we obtain ĉE < c∗E < c∗L < ĉL when θ̂ > θ in this

example.

4.2 Robustness of RPC c∗∗

We see that our provision scheme enable the contract c∗∗ to uniquely achieve

the e�cient outcome in equilibrium. Here, we should remember that the

provision scheme, known as deposit freeze or the suspension of convertibility,

can also uniquely achieve the e�cient outcome.7 I would like to emphasize

that the contract c∗∗ with our provision scheme is more robust than a contract

with deposit freeze policies.

To elucidate this point, consider the following contract c̃ = (c̃E(·), c̃L(·)):

c̃E(θ̂) =

c∗E if θ̂ ≤ θ̃

0 if θ̂ > θ̃
, c̃L(θ̂) =


c′L(θ̂) if θ̂ ≤ θ

c′′L(θ̂) if θ < θ̂ ≤ θ̃

c∗E if θ̂ > θ̃

(10)

where c′L is the same one in (7),

c′′L(θ̂) =
R

1− θ̂

(
1− θc∗E − (θ̂ − θ)c∗E

1− κ

)
,

7See Diamond and Dybvig (1983). However, Engineer (1989) shows an example in
which a deposit freeze policy fails to achieve an e�cient outcome. See also Ennis and
Keister (2009).
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and θ̃ is such that c′′L(θ̃) = c∗E. This contract represents a deposit freeze

policy. We can easily check that c̃ is an RPC.8 However, we can also see that

whether or not c̃ is well-de�ned depends on κ; c̃ is no longer de�ned when κ

is su�ciently large. Hence, the contract c̃ is sensitive for the parameter κ.

Next, consider the following contract c1 = (c1E(·), c1L(·)):

c1E(θ̂) =

c∗E if θ̂ ≤ θ

0 if θ̂ > θ
, c1L(θ̂) =

c′L(θ̂) if θ̂ ≤ θ

bL(θ̂) if θ̂ > θ
(11)

where c′L is the same one in (7) and

bL(θ̂) =
R(1− θc∗E)

1− θ̂
.

The contract c1 is an RPC that is consistent with a deposit freeze policy

for κ = 1. Here, suppose that a type state θ is stochastic and θ′ = θ + ϵ

is realized, where ϵ > 0 is su�ciently small. Then, the outcome of (11) is

c1E(θ
′) = 0 while c∗∗E (θ′) = ĉE(θ

′) ≈ c∗E, and c
1
L(θ

′) = bL(θ
′) = ĉL(θ

′) = c∗∗L (θ′).

Hence, contract c1, compared with contract c∗∗, distorts the consumption

for ϵ early depositors, whereas both contracts provide the same consumption

for late depositors. This shows that c∗∗ is more robust than c1 in that c1

drastically changes the consumption for early depositors with respect to a

small shock for the type state.

5 Concluding remarks

This paper shows that the e�cient consumption of a deposit contract can

be achieved even if there exists a liquidation cost for a long-term invest-

ment technology. Compared with Cooper and Ross (1998), this paper shows

that a provision scheme design can expand the set of incentive-compatible

run-preventing contracts. Further, we can provide e�cient consumption re-

gardless of the liquidation cost and the relative risk aversion coe�cient of

8The bank provides c∗E to a depositor for all t′ ∈ [0, T ) if
∫
j∈Ψ(t′)

L(dj) ≤ θ̃; otherwise

0 for all t ∈ [t′, T ). When t ≥ T , the bank knows θ̂ and hence provides c̃L(θ̂) to each i ∈ I.
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depositors. This �parameter-free� property is a strong point of our contract

compared with a deposit contract with deposit freeze policies.

This paper sheds light on the payment policy of banks in implementing

a deposit contract. Under a sequential service constraint without retroactive

levy, the obtained result shows that a refund cap is an important policy for

run prevention and e�ciency. Such a refund cap prohibits early depositors

from fully withdrawing their deposits at one time and they are compelled to

put up with relatively less consumption for the present, but ultimately, all

early depositors can consume e�ciently in equilibrium. Thus, our optimal

payment policy renders a demand deposit contract similar to a time deposit

contract in order to uniquely achieve an e�cient outcome.

6 Appendix

6.1 Proof of Lemma 1

For notational convenience, we let ĉq = ĉq(θ̂), q = E or L. The Lagrangian

of the problem (6) is

L = θ̂u(cE)+(1−θ̂)u(cL)+λ(θc∗E−θ̂cE)+µ(R(1−θc∗E)+θc∗E−θ̂cE−(1−θ̂)cL)

with some λ ≥ 0 and µ ≥ 0. By using Kuhn-Tucker's theorem, we obtain

u′(ĉE) = u′(ĉL) + λ, u′(ĉL) = µ (12)

with complementary slackness conditions λ(θc∗E − θ̂ĉE) = 0 and µ(R(1 −
θc∗E) + θc∗E − θ̂ĉE − (1 − θ̂)ĉL) = 0. In the optimum, we obtain ĉE ≤ ĉL.

If ĉE = ĉL = ĉ, that is, λ = 0, then the complementary slackness condition

for µ implies ĉ = R(1 − θc∗E) + θc∗E. Since R(1 − θc∗E) = (1 − θ)c∗L and

(1 − θ)c∗L + θc∗E > c∗E, we must have ĉ > c∗E. Then, the �rst inequality

constraint of (6) implies that θ̂ < θ. Hence, we obtain ĉE < ĉL whenever θ̂ > θ

and the complementary slackness condition for λ implies that θc∗E = θ̂ĉE.

Thus, we obtain ĉE < c∗E < c∗L < ĉL.
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6.2 Proof of Proposition 1

Let qi(t) denote the amount of consumption that depositor i consumes in

[0, t). Assumption 2 and our sequential service constraint imply that the

bank knows qi(t) if depositor i is served at time t. Let cE ≡ inf θ̂>θ ĉE(θ̂).

Then cE > 0 since limc→0 u
′(c) = ∞. Taking into account the sequential

service constraint and Assumptions 1 and 2, we de�ne the provision function

for a depositor i as follows:

Rule 1. For all t ∈ [0, K) with a �xed K < T , if mi(t) = 1 and qi(t) < c̄E,

then

gi(mi, ·, t) = c̄E.

Rule 2. For all t ∈ [K,T ), if mi(t) = 1 and qi(t) = c̄E, then

gi(mi, ·, t) = c∗∗E (θ̂)− cE.

Rule 3. For all t ∈ [T, T ′], if mi(t) = 1 and qi(t) < c̄E, then

gi(mi, ·, t) = c∗∗L (θ̂).

Lemma 1 ensures that c∗∗E (θ̂)−cE ≥ 0 for all θ̂ ∈ [0, 1]. Any early withdrawal

tender can be served c∗∗E (θ̂) in [0, T ) since there is a bijection σ : I → [a, b) for

arbitrary a < b. Hence, the provision function followed Rules 1�3 can provide

c∗∗E (θ̂) to θ̂ early depositors by time T . Since c∗∗E (θ̂) < c∗∗L (θ̂) for all θ̂ ∈ [0, 1],

mi(t) = 1 for all t ∈ [0, T ) (mi(t) = 0 for all t ∈ [0, T ) and mi(t) = 1 for

all t ∈ [T, T ′]) is a strictly dominant behavior for early (late) depositor i. In

equilibrium, θ̂ = θ and the e�cient outcome (c∗E, c
∗
L) is uniquely achieved.
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