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ABSTRACT

This paper provides a positive result for the unique implementation

of the e�cient deposit contract of the Diamond and Dybvig (J. Polit.

Econ. 91 (1983) 401�419) model. The role of the bank here is to

implement an e�cient deposit contract. However, the realized outcome

may be ine�cient, either when the bank faces an aggregate risk on

the preference state of depositors or when a self-ful�lling bank run

occurs (or both). Regardless of the causes, a mild psychological motive

held by a few depositors enables us to construct a provision scheme

that fully reveals the true state and uniquely implements the e�cient

deposit contract concerning the state with iterative deletions of weakly

dominated strategies.
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1 Introduction

This paper analyzes the Diamond�Dybvig (1983) model of demand deposit

contracts and shows that almost all e�cient deposit contracts are uniquely

implementable with a few �socially conscious� depositors.

In the Diamond�Dybvig model, a risk-sharing contract between a bank

and depositors is considered e�cient only if the bank knows the type state

of the depositors, that is, if the bank knows the number of depositors who

need funds immediately. Moreover, if the bank knows the type state of

depositors, Diamond and Dybvig (1983) show that an ex ante e�cient risk-

sharing contract can be uniquely implementable with a deposit freeze policy.

Hence, the contract fails to ensure e�ciency if and only if the bank does

not know the type state. Indeed, if the bank faces an aggregate risk on a

type state, that is, the bank does not know the exact type state, it may

be optimal for all depositors to tender a full withdrawal before maturity,

leading to a bank run. In such a case, Diamond and Dybvig (1983) propose

deposit insurance provided by the government as a solution to prevent bank

runs. However, it remains unclear whether such government intervention is

required to prevent bank runs in an environment with aggregate risk.

This paper reexamines the implementation problem of e�cient deposit

contracts of the Diamond�Dybvig model in an environment with aggregate

risk without deposit insurance. For this purpose, the paper introduces some

socially conscious depositors. By using such depositors, I show that there

is a provision scheme that uniquely implements an ex ante e�cient deposit

contract in an environment with aggregate risk and without government in-

tervention such as deposit insurance.

A novel feature of this paper is the introduction of socially conscious

depositors into the deposit contract design. There are two social categories

in the economy. Depositors in the socially conscious category have a rational

preference with a psychological cost, and depositors in the other category are

assumed to have only a rational preference. A socially conscious depositor

incurs an arbitrarily small psychological cost with an early withdrawal when

he does not immediately require the funds, but more importantly, the cost
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declines if some other socially conscious depositors have already withdrawn

their deposits before his early withdrawal despite no immediate need for their

funds.

Furthermore, I suggest another issue to be considered by the Diamond�

Dybvig model: a time-consistent budget constraint. A time-consistent budget

constraint refers to the relationship between the set of feasible contracts and

the payment ability of the bank. We must consider whether the bank can

o�er a contract that provides a positive amount of consumption to zero-

measured depositors after the bank repays all funds to their depositors. This

issue is critical to the prevention of bank runs because the Diamond�Dybvig

model represents the depositors as a continuum. However, previous studies

have not seriously considered this issue. In this paper, we assume that the

bank cannot o�er any positive amount of consumption to depositors after

the bank's deposit is zero.

We construct a provision scheme for the deposit contract of the Diamond�

Dybvig model. The provision scheme requires no government intervention

such as deposit insurance. The main result of this paper is that the provi-

sion scheme under a time-consistent budget constraint uniquely implements

almost all e�cient contracts with iterative deletions of weakly dominated

strategies if there are a few socially conscious depositors.1 The contribution

of this paper therefore lies in the exhibition of the successful incorporation of

a slight psychological motive into the e�cient deposit contract design prob-

lem.2

This paper is organized as follows. Section 2 describes the basic frame-

work of the model. Section 3 introduces several de�nitions, including those of

a time-consistent budget constraint and a psychological cost. Section 4 intu-

itively explains our main result. Section 5 presents the main result. Section

6 presents the concluding remarks.

1Another approach toward the establishment of a unique outcome is the �global game�
approach. See for example, Goldstein and Pauzner (2005).

2Psychological preferences and human interactions have been widely investigated in
economics, e.g., Geanakoplos et al. (1989), Bernheim (1994), Dufwnberg and Lundholm
(2001), Battigalli and Dufwnberg (2009), and Dufwenberg et al. (2011).
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1.1 Related literature

This paper takes a mechanism-design approach to solve the unique implemen-

tation problem of e�cient deposit contracts in the Diamond�Dybvig model.

Green and Lin (2003) also take the same approach in a �nite-trader version

of the Diamond�Dybvig model without any psychological depositors (here-

after, the Green�Lin model). They show that the ex ante e�cient contract

is implementable in strictly dominant strategies. We observe that their af-

�rmative result hinges on the �niteness of depositors. If depositors are �-

nite, the behavior of a single depositor in�uences the outcome of a contract.

As a result, the bank can incentivize a depositor to reveal his true type in

the Green�Lin model without the time-consistent budget constraint problem.

However, if depositors are represented by a continuum (i.e., as in the original

Diamond�Dybvig model), the decision of a single depositor cannot in�uence

the outcome of a contract, which fails to fully incentivize a depositor.

This paper assumes a psychological cost for some depositors. The most

critical assumption concerning the psychological cost is that the cost of a de-

positor can be reduced depending on the other socially conscious depositors.

This cost reduction property is consistent with the �broken windows theory�

(Wilson and Kelling (1982)). According to the theory, people tend to become

vandals once they observe small signs of social disorder. Keizer et al. (2008)

empirically examine this theory using �eld experiments and �nd their results

to support the theory. In our banking model, a socially conscious depositor

becomes less conscious once some other socially conscious depositors have

tendered a full withdrawal before maturity.

2 Model

2.1 Material environment E

The model used in this paper is based on the Diamond�Dybvig (1983) model.

Consider an economy with a single consumption good, a representative bank,

and depositors. The bank implicitly faces competition with other identical

banks, and its pro�t is assumed to be zero. The economy has three event
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phases: E0, E1, and E2. There are two technologies available to the bank:

storage and investment. Storage yields one unit of the consumption good

in E1 per unit input in E0. Investment yields R > 1 units of the good at

a maturity time in E2 per unit input in E0. Premature liquidation of the

investment yields one unit of the good in E1 per unit input in E0; that is,

there is no liquidation cost for the investment.

Depositors are identical in E0 and are represented by the continuum I =

[0, 1]. Each depositor has one unit consumption good as an endowment,

which it deposits in the representative bank in E0. At the beginning of E1,

a fraction of the depositors, θ ∈ (0, 1), which we call early depositors, face a

liquidity shock. The remaining depositors, 1−θ, which we call late depositors,

do not face a liquidity shock. Early depositors must exit from the market by

the end of E1, but late depositors can still exist in E2.

Early depositors value consumption in E1, while late depositors value

consumption in both E1 and E2. Let cn denote the consumption of depositors

in En (n = 1, 2). The payo�s of depositor i are given by

Ui(c1, c2) =

u(c1) if i is an early depositor

u(c1 + c2) if i is a late consumer,
(1)

where u in (1) is a von Neumann�Morgenstern utility function u : R+ →
R+, which is strictly increasing, strictly concave, and twice di�erentiable,

and which satis�es u(0) = 0, limc→0 u
′(c) = ∞, limc→∞ u′(c) = 0, and

−u′′(c)/u′(c) > 1 for all c > 0.

An ex ante e�cient allocation for state θ is de�ned as the solution of the

following optimization problem:

max
ce,cl

θu(ce) + (1− θ)u(cl)

s.t. (1− θ)cl ≤ R(1− θce),
(2)

where the subscript e (l) denotes early (late). In the optimum, the solution

(c∗e(θ), c
∗
l (θ)) exists uniquely for each θ ∈ (0, 1) and satis�es 1 < c∗e(θ) <
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c∗l (θ) < R for all θ ∈ (0, 1).3 The constraint in (2) tells us that c∗e(1) = 1

and c∗l (0) = R, while c∗e(0) and c∗l (1) are indeterminate. We de�ne a contract

as a pair of contingent consumptions on a realized state θ and denote it by

c = (ce(·), cl(·)). A contract is said to be e�cient if (i) c is the solution of

Problem (2) for all θ ∈ (0, 1) and (ii) ce(1) = 1 and cl(0) = R. We denote

by C the set of e�cient contracts. Throughout the paper, I assume that the

bank does not know the realized state θ in E0 and that whether a depositor is

early or late is his private information. We refer to the environment de�ned

above as the material environment E .

3 De�nitions

Because our interest lies in the prevention of bank runs, we focus solely on

the behavior in E1 without loss of generality. For tractability, let us denote

E1 = [0, T ) and E2 = [T, T ′], where t = 0 refers to the time of liquidity shock

and t = T refers to the time by when early depositors have completely exited

from the market and the maturity time of the investment.

3.1 Provision scheme

The bank implements a contract with a provision scheme. We denote the

message of a depositor i by a measurable function mi : [0, T ′] → {0, 1},
where action mi(t) = 1 (0) implies that depositor i tenders (does not tender)

a full withdrawal at time t. Let mi = (mi(t))t∈[0,T ′] ∈ Mi, where Mi is

the set of all possible messages of depositor i. We denote the pro�le of

the messages of all depositors and that of depositors other than depositor i

by m ∈ M ≡
∏

i∈I Mi and m−i ∈ M−i ≡
∏

j ̸=i Mj, respectively. We write

m = (m\mi) if we emphasize a message of depositor i, Let gi(m, t) denote the

provision of the good for depositor i at time t, where gi : M × [0, T ′] → R+.

We refer to M = (Mi, gi(·, ·))i∈I as a provision scheme. A provision scheme

describes when and how much depositors are served by the bank.

3These derivations owe to Diamond and Dybvig (1983).
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De�nition 1 A provision scheme achieves allocation (ce, cl) with a message

pro�lem if for any early depositor i, there exists a �nite set {ti1, . . . , tiN} ⊂ E1

such that
∑N

n=1 gi(m, tin) = ce and for any late depositor j, there exists a �nite

set {tj1, . . . , t
j
K} ⊂ E1 ∪ E2 such that

∑K
k=1 gj(m, tjl ) = cl.

3.2 Time-consistent budget constraint

I introduce a new constraint into our material environment E . Let Bt denote

the amount of the deposits that the bank holds at time t and L(X) denote

the Lebesgue measure of a set X.

Assumption 1 (Time-consistent budget constraint) The feasible contracts

of the bank are subject to the following constraint: If L(Bt) = 0, then

gj(·, t′) = 0 for all t′ ≥ t and j ∈ I.

Because c∗e(1) = 1 in Problem (2), this assumption implies that c∗l (1) = 0.

Without this assumption, the Diamond�Dybvig model is free from the

bank run problem. To see this point clearly, Suppose that u(c) = c(1−γ)(1−
γ)−1, where γ > 1 is the relative risk aversion parameter. In this case, the

solution of Problem (2) is easily derived as

c∗e(θ) =
1

θ + (1− θ)R
1−γ
γ

, c∗l (θ) = R
1
γ c∗e(θ).

Let θ̂ denote the number of full withdrawal tenders in E1. Suppose that

θ < 1 but θ̂ = 1. Because the bank does not know the true state, the

bank provides c∗e(θ̂) = 1 to all depositors in E1 and the obtained result is

ine�cient. To prevent such full withdrawals, the bank must provide more

favorable consumption to a depositor in E2. In this case, c∗l (θ̂) = R
1
γ . Here,

we confront a problem: Can the bank provide R
1
γ to a depositor in E2?

Because the bank fully liquidates the investment and pays them back to all

depositors in E1, the bank has no funds in E2. Thus, we observe that the

bank cannot provide R
1
γ to any depositor.

One may think, however, that the bank can o�er any positive consump-

tion in that case because there remain at most zero-measured depositors in
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E2. If we allow the bank to o�er positive consumption to zero-measured

depositors, the bank run problem becomes �no problem� because we can in-

centivize late depositors by o�ering positive consumption. To clearly con�rm

this point, as in the original Diamond�Dybvig model, suppose that the bank

commits to provide ce = c∗e(θ) > 1 to any withdrawal tender in E1. In this

case, Diamond and Dybvig (1983) point out that θ̂ = 1 is an undesired Nash

equilibrium behavior because the bank goes bankrupt in E1 when provid-

ing the good to the amount of θ̃ = 1/ce depositors. However, if the bank

can provide any positive consumption to zero-measured depositors, it is fea-

sible to o�er c∗l (θ) in E2 up to zero-measured depositors even if the bank

has provided ce to θ̃ depositors in E1. In this case, a late depositor �nds

it pro�table to unilaterally tender a full withdrawal in E2. Hence, θ̂ = 1

is no longer Nash equilibrium when θ < 1, and we can solve the bank run

problem. Thus, we should consider the time-consistent budget constraint in

the Diamond�Dybvig model.

The time-consistent budget constraint does not matter in the Green�

Lin model. The Green�Lin model assumes �nite depositors. Let ξ ∈
{0, 1, · · · , N} denote the number of early depositors. Then, we can identify

an e�cient allocation (c̃∗e(ξ), c̃
∗
l (ξ)) in the Green�Lin model with the alloca-

tion (c∗e(ξ/N), c∗l (ξ/N)) in our model. Let θ̂ = ξ̂/N , where ξ̂ is the number

of early full withdrawal tenders in the Green�Lin model. Then, θ̂ = 1 corre-

sponds to ξ̂ = N . If ξ̂ = N , the e�cient allocation is (c̃∗e(N), c̃∗l (N)), where

c̃∗e(N) = 1. Because there are �nite depositors and c∗l ((N − 1)/N) > 1,

the allocation (c̃∗e(N − 1), c̃∗l (N − 1)) = (c∗e((N − 1)/N), c∗l ((N − 1)/N))

can be achieved by unilateral deviation from ξ̂ = N regardless the value of

c̃∗l (N). However, if the set of depositors is represented by a continuum, we

must consider the time-consistent budget constraint because the allocation

(c∗e(1), c
∗
l (1)) is unchanged by unilateral deviation.

3.3 Psychological cost

We introduce socially conscious depositors into the material environment

E . The socially conscious depositors want to achieve an e�cient allocation
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and hence are willing to avoid early withdrawal when they are �late.� To

simplify the model, I assume that the socially conscious depositors are all late

depositors and that each incurs a psychological cost with early withdrawal.

Hereafter, we refer to the socially conscious depositors as α-late depositors

and the late depositors who do not have the socially conscious preference as

β-late depositors.

More importantly, the psychological cost declines once some other α-late

depositors have already tendered an early withdrawal. This cost reduction

implies that an α-late depositor becomes less motivated to achieve the e�-

cient outcome. For tractability, for a given θ, we divide the set of depositors

into three sets, Iθ(e), Iθ(α), and Iθ(β), such that Iθ(l) = Iθ(α) ∪ Iθ(β) and

Iθ(α) ∩ Iθ(β) = ∅. Let ηi denote a type of depositor i, ηi ∈ {α, β, e}, where
α/β/e denote α-late/β-late/early depositors, respectively. Under a provision

scheme, we introduce the number τi such that

τi ≡ inf
{
t ∈ [0, T ′] | mi(t) = 1

}
.

If mi(t) = 0 for all t ∈ [0, T ′], we let τi = T ′.

De�nition 2 A function Di : M → R represents a psychological cost if, for

all θ ∈ [0, 1], i ∈ Iθ(α), and m ∈ M ,

τi ≥ T ⇒ Di(m) = 0, (3)

∀j ∈ Iθ(α), τi ≤ τj < T ⇒ Di(m) = −d1 < 0, (4)

and

∃j ∈ Iθ(α)\{i}, τj < τi < T ⇒ Di(m) = −d2 > −d1 (5)

with d2 ≥ 0.

Properties (3) and (4) imply that depositor i is better o� with respect to Di

if he does not tender an early withdrawal. In addition, Properties (4) and (5)

imply that depositor i is better o� with respect to Di if he waits to tender
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his early withdrawal until some other α-late depositors tender a withdrawal

or when he waits to tender a withdrawal by the maturity time T .

The cost reduction in Property (5) indicates that the motivation for ef-

�ciency lessens once some other α-late depositors have undertaken socially

ine�cient behavior, that is, early withdrawal. This cost reduction property

is consistent with the empirical result of Keizer et al. (2008), who use �eld

experiments to determine whether a norm violation by some people causes

subsequent norm violations by other people.4 Keizer et al. (2008) report

that once people observe one norm violation, they are likely to violate other

norms. In our model, the norm is the achievement of a socially e�cient allo-

cation. It is costly for an α-late depositor to violate the norm, but this cost

lessens if some other α-late depositors have already violated the norm.

In this paper, I assume that an α-late depositor i has the following addi-

tive separable payo� function:

u(gi(m, t)) +Di(m). (6)

To avoid a trivial case, I further assume that the cost itself is su�ciently

small compared to the consumption of the initial endowment.

Assumption 2 (Small psychological cost) The value d1 satis�es:

u(1)− d1 > u(0).

This assumption excludes the case in which α-late depositors do not tender

any early withdrawal before T because of a large psychological cost.

I refer to the environment in which there are socially conscious depositors

in E such that their preferences are de�ned with (6) subject to Assumption

2 as the psychological environment Ep.

4Some research attempts to incorporate �ndings from social psychology into economic
theory. Matsushima (2009), for instance, incorporates a psychological preference for social
conformity into implementation theory.

10



4 Implementation without sequential service

constraints

The aim of this section is to provide an intuitive explanation of how we imple-

ment an e�cient allocation in the psychological environment Ep. Throughout
this section, we assume the following for simplicity:

Assumption 3 (S1:) There are θ early depositors, δ(1 − θ) α-late deposi-

tors, and (1 − δ)(1 − θ) β-late depositors, where θ, δ ∈ (0, 1). In addition,

this information is common knowledge shared by the depositors. (S2:) The

provision of the consumption good occurs in {0, t1} ⊂ E1 and {t2} ⊂ E2 for

some t1 ∈ (0, T ) and t2 ∈ [T, T ′]. (S3:) There is no sequential service con-

straint; that is, the bank can provide the good after counting the number of

withdrawal tenders in each t ∈ {0, t1, t2}.

We will de�ne a sequential service constraint in Section 5.1. Under Assump-

tion 3, we obtain the following proposition.

Proposition 1 In a psychological environment Ep with Assumption 3, there

exists a provision scheme M that achieves the allocation (c∗e(θ), c
∗
l (θ)) with

a unique optimal message pro�le m∗.

Proof. Consider the following payment scheme, M:

1. Let θ̂0 denote the number of withdrawal tenders in t = 0. The bank

provides c∗e(θ̂0) to pθ̂0 depositors and nothing to (1 − p)θ̂0 depositors,

where p ∈ (0, 1).

2. Let θ̂1 denote the number of withdrawal tenders in t = t1. The bank

provides c∗e(θ̂0) to depositors if and only if θ̂1 ≤ (1− p)θ̂0.

3. In t = t2, the bank provides c∗l (θ̂0) to depositors if θ̂0 < 1; if θ̂0 = 1, the

time-consistent budget constraint implies that the bank provides 0.

We show that M achieves the allocation (c∗e(θ), c
∗
l (θ)) with a message pro�le

m∗ such that m∗
j(0) = m∗

j(t1) = 1 for any early depositor j and m∗
i (0) =

m∗
i (t1) = 0 and m∗

i (t2) = 1 for any late depositor i.
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For an early depositor j, if m∗
j(0) = m∗

j(t1) = 1, then his payo� is

pu(c∗e(θ̂0)) + (1− p)Γ(m\m∗
j)u(c

∗
e(θ̂0)), where Γ(m\m∗

j) = 1 if θ̂1 ≤ (1− p)θ̂0;

otherwise it equals 0. If m′
j(0) = 0 or m′

j(t1) = 1, then his pay-

o� is Γ(m\m′
j)u(c

∗
e(θ̂0)) or pu(c∗e(θ̂0)). Because of continuum depositors,

Γ(m\m∗
j) = Γ(m\m′

j); thus, mj(0) = mj(t1) = 1 are the optimal actions

for all early depositors.

Following this reasoning, we consider the decision of an α-late depositor.

First, suppose that an α-late depositor i expects that some other α-late

depositors tender a full withdrawal in t = 0. If mi(0) = mi(t1) = 1, his

payo� is pu(c∗e(θ̂0))+(1−p)Γ(m)u(c∗e(θ̂0))−d1. If m
′
i(0) = 0 and m′

i(t1) = 1,

then Γ(m\m′
i)u(c

∗
e(θ̂0))− d2. Hence, for a su�ciently small p, we obtain

pu(c∗e(θ̂0)) + (1− p)Γ(m)u(c∗e(θ̂0))− d1 −
(
Γ(m\m′

i)u(c
∗
e(θ̂0))− d2

)
= p(1− Γ(m))u(c∗e(θ̂0))− (d1 − d2)

≤ pu(c∗e(θ̂0))− (d1 − d2)

< 0.

Hence, m(0) = 1 is not optimal in this case. Next, suppose that an α-late

depositor i expects that no other α-late depositors tender a full withdrawal

in t = 0. Then, depositor i deduces that θ̂0 < 1 because of assumption S1.

In t = t2, depositor i can de�nitely be served c∗l (θ̂0), which is greater than

c∗e(θ̂0), by taking the actions mi(t0) = mi(t1) = 0 and mi(t2) = 1. In both

the cases, depositor i �nds it better not to tender a full withdrawal in t = 0.

Thus, no α-late depositor tenders a full withdrawal in t = 0.

Following this reasoning, a β-late depositor deduces that θ̂0 < 1 is certain

because of assumption S1 and that he can de�nitely be served c∗l (θ̂0) in t = t2.

Hence, it is better for all β-late depositors not to tender a full withdrawal in

t = 0 and t1; thus, all late depositors deduce that θ̂0 = θ. Any late depositor

therefore tenders a full withdrawal only in t = t2, and the bank achieves

e�cient allocation such that all θ early depositors receive c∗e(θ) in E1 and all

1− θ late depositors receive c∗l (θ) in E2. ■
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It is important for this a�rmative result to take p such that p ∈ (0, 1).

If p = 1, the second stage of M has no meaning; the bank provides c∗e(θ̂0)

in the �rst stage and c∗l (θ̂0) or 0 in the third stage. In this case, however,

θ̂0 = 1 constitutes a Nash equilibrium because of the time-consistent budget

constraint (Assumption 1) and the small psychological cost (Assumption 2).

If p = 0, depositors are not served in the �rst stage of M. In this case,

the choice of withdrawal tender in t = 0 or t = t1 is indi�erent for early

depositors; thus, the provision scheme with p = 0 fails to ensure that θ̂0 = θ.

5 Implementation with a sequential service

constraint

5.1 Sequential service constraint

A sequential service means that the provision at time t can depend only on

information concerning the amount the bank has served by t and not on any

future information. To formalize a sequential service in our continuous-time

model, I �rst impose the following constraint on our environment.

Assumption 4 For each t ∈ [0, T ′], if there exists a depositor i such that

gi(·, t) > 0, then gj(·, t) = 0 for all j ∈ I\{i}.

Assumption 4 states that the bank can provide the good to at most a single

depositor at each time. This assumption breaks S2 in Assumption 3. I

further assume that any �retroactive levy� of banks is prohibited; that is,

banks cannot make depositors repay served consumption goods.

Assumption 5 The bank is subject to a no-retroactive-levies constraint: For

all i ∈ I and t ∈ [0, T ′], if gi(·, t) = ct > 0, depositor i consumes ct at time t.

The set of periods in which a depositor i are served by a time t is

Hi(t) ≡ {k ∈ [0, t) | gi(·, k) > 0}.

Let mi[t] ≡ (mi(k))k∈Hi(t) and we refer to mi[t] as a history of depositor

i by time t. The set of depositors who have already been served positive
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consumption from the bank by time t is given by

Ψ(t) ≡ {j ∈ I | Hj(t) ̸= ∅}.

The bank must provide the good contingent on the withdrawals that have

occurred so far. The available information of the bank in providing the good

to a depositor i at a time t therefore only contains the action of depositor i

at time t and history mj[t] for all j ∈ Ψ(t); this condition is our sequential

service constraint of the bank.

De�nition 3 (Sequential service constraint) For each i ∈ I, m ∈ M , and

t ∈ [0, T ′],

gi(m, t) = gi(mi(t), (mj[t])j∈Ψ(t), t).

Note that the sequential service constraint implies that the bank cannot

know the number of total withdrawal tenders at time 0. Suppose that two

depositors tender a full withdrawal at time 0. The bank can provide the good

to only one depositor at that time because of Assumption 4 and because all

the information available to the bank in providing the good at time 0 is

that there is one depositor who tenders a full withdrawal. Furthermore,

Assumption 5 makes it impossible for the bank to re-obtain the consumption

from served depositors.5

5.2 Provision scheme and solution concepts for imple-

mentation

Let qi(t) denote the amount of consumption that the bank has provided to

depositor i in [0, t). Our sequential service constraint implies that the bank

knows qi(t) if the bank provides the good to depositor i at time t. We pick

k1 and k2 in (0, T ) such that 0 < k1 < k2 < T and de�ne the phases such

that ∆1 ≡ [0, k1), ∆2 ≡ [k1, k2), ∆3 ≡ [k2, T ), and ∆4 ≡ [T, T ′]. We consider

5Our sequential service constraint is less demanding than that used in the research of
a �nite-trader version of the Diamond�Dybvig model. See Green and Lin (2003), Peck
and Shell (2003), Andolfatto et al. (2007), Andolfatto and Nosal (2008), and Ennis and
Keister (2009).
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a provision scheme M∗ = (Mi, gi(·, ·))i∈I that comprises these phases.

Phase 1: For all t ∈ ∆1 and m ∈ M ,

gi(m\mi, t) =

1 w.p. p

0 w.p. 1− p

if mi(t) = 1 and qi(t) < 1; otherwise, gi(m, t) = 0 with probability one,

where p ∈ (0, 1) is such that 0 < pR < 1 and pu(R) < d1 − d2.

Phase 2: Let θ̂ denote the number of full withdrawal tenders in ∆1. For all

t ∈ ∆2, gi(·, t) = c∗e(θ̂)− 1 if qi(t) = 1; otherwise, gi(·, t) = 0.

Phase 3: Let Q(t) denote the set of depositors who have been served c∗e(θ̂)

by time t; that is,

Q(t) ≡ L
({

j ∈ Ψ(t) | ∃t′ ≤ t, qj(t
′) = c∗e(θ̂)

})
.

For all t ∈ ∆3 and m ∈ M ,

gi(m\mi, t) =

c∗e(θ̂) if Q(t) ≤ θ̂

0 otherwise

if mi(t) = 1 and qi(t) = 0; otherwise, gi(m, t) = 0.

Phase 4: For all t ∈ ∆4 and m ∈ M , if θ̂ < 1,

gi(m\mi, t) =
R(1− θ̂c∗e(θ̂))

1− θ̂

whenever mi(t) = 1 and qi(t) = 0; otherwise, gi(m, t) = 0.

Under Assumption 4, the scheme M∗ can provide to at most one depos-

itor at each time. To investigate the strategic behavior of depositors, it is

important to know the order in which depositors are served. Let ωk(t) ∈ I

denote a depositor who can be served at time t in Phase k. We assume that
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the scheme M∗ is subject to the following law.

Assumption 6 For any Phase k ∈ {1, 2, 3, 4} in M∗, the order in which

depositors are served is determined a priori by a bijection ωk : ∆k → I.

Let ω−1
k denote an inverse of ωk. For any i and j in I such that i ̸= j, if

ω−1
k (i) < ω−1

k (j), then depositor i can be served earlier than j in Phase k.

Under Assumption 6, the provision function in M∗ depends on ω rather than

t; hence, we describe the provision function for i as gi(m,ωk). Let Ωk denote

the set of all possible bijections ωk in Phase k and ω ∈ Ω ≡ Ω1×Ω2×Ω3×Ω4.

We assume that depositors do not know a realized ω.

Let us denote the payo� function of depositor i by

Ui(gi,m, ω) =

u(gi(m,ω)) +Di(m) if i is α-late

u(gi(m,ω)) otherwise,

where Di(m) is the cost function de�ned in De�nition 2. Given a type ηi,

a message m′
i is weakly dominated against M̂−i ⊂ M−i if, for all ω ∈ Ω and

m−i ∈ M̂−i, there exists a message m′′
i that satis�es

Ui(gi,m
′′
i ,m−i, ω) ≥ Ui(gi,m

′
i,m−i, ω) (7)

and for some ω ∈ Ω and m−i ∈ M̂−i, there exists a message mi that satis�es

Ui(gi,m, ω) > Ui(gi,m
′
i,m−i, ω). If (7) holds strictly, then message m′

i is

strictly dominated against M̂−i. If there exists a message m′′
i such that for

all ω ∈ Ω and m−i ∈ M̂−i, (7) holds and for some ω ∈ Ω and m−i ∈ M̂−i, (7)

holds strictly, then message m′′
i weakly dominates message m′

i against M̂−i.

Let si denote a pure strategy of depositor i, si : {e, α, β} → Mi. I denote

by Si the set of pure strategies of depositor i. A strategy s′′i ∈ Si weakly

dominates s′i ∈ Si against Ŝ−i ⊂ S−i if for all ηi ∈ {e, α, β}, ω ∈ Ω, and

s−i ∈ Ŝ−i,

Ui(gi, s
′′
i (ηi), s−i, ω) ≥ Ui(gi, s

′
i(ηi), s−i, ω) (8)

and for all ηi ∈ {e, α, β}, there exists some ω ∈ Ω and s−i ∈ Ŝ−i such
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that (8) holds strictly. Let K denote a bounded subset of R+. Consider a

sequence of sets indexed by k ∈ K, {Si(k)}k∈K , such that [1] Si(a) = Si,

where a = infK, [2] Si(k) ⊆ Si(k
′) i� k ≥ k′, and [3] any s′i ∈ Si(k

′)\Si(k),

if it exists, is weakly dominated against S−i(k
′). I refer to the sequence that

satis�es properties [1] through [3] as a deletion sequence. A strategy s∗i is

weakly iteratively undominated if there exists a deletion sequence such that

s∗i ∈
∩

k∈K Si(k).

De�nition 4 The provision scheme M∗ = (M, g) implements an e�cient

contract c∗ = (c∗e(·), c∗l (·)) in weakly iteratively undominated strategies if for

any θ ∈ [0, 1] and any weakly iteratively undominated strategy pro�le s∗, the

provision scheme M∗ achieves the allocation (c∗e(θ), c
∗
l (θ)) with the message

pro�le m∗ = s∗(θ).

5.3 Main theorem

We make an assumption concerning the existence ratio of depositors.

Assumption 7 (i) If θ ∈ (0, 1), then L(Iθ(α)) > 0. (ii) For all θ ∈ [0, 1]

and η ∈ {e, α, β}, if Iθ(η) ̸= ∅, then L(Iθ(η)) > 0.

Assumption 7(i) implies that if there are late depositors, some of them have

the socially conscious preference. Assumption 7(ii) implies that if a depositor

�nds himself a type η, he is sure that there are many type-η depositors. Note

that Assumption 7 is used to generalize S1 in Assumption 3. We describe

the psychological environment that satis�es Assumption 7 as E∗
p .

Theorem 1 Suppose that any provision scheme is subject to the sequential

service constraint with Assumptions 4, 5, and 6. In a psychological environ-

ment E∗
p , the payment scheme M∗ implements any e�cient contract c∗ ∈ C∗

in weakly iteratively undominated strategies, where

C∗ = {c∗ ∈ C | c∗e(0) ∈ (0, R), c∗l (1) = 0}.

Remark. (1) The proof of this theorem is analogous to that of Proposition

1. (2) The result is valid even if the number of socially conscious depositors
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is arbitrary low as far as it has a positive Lebesgue measure. Proof. For

convenience, we describe an action of a message mi for which mi = si(η) as

si(η, t), i.e., si(η, t) = mi(t), where mi = si(η). We de�ne the earliest time

of si(η, t) = 1 for late depositor i as

τ(si(η)) ≡ inf{t ∈ [0, T ′] | si(η, t) = 1}

for η ∈ {α, β}.
(1. Early depositors): Consider a strategy such that s∗i (e, t) = 1 for all

t ∈ [0, T ). For an arbitrary message pro�le m−i ∈ M−i, his payo� is

pu(c∗e(θ̂)) + (1− p)u
(
gi(m\s∗i (e), ω3)

)
.

We show that message s∗i (e) weakly dominates any message si(e) such that

si(e, t
′) = 0 for some t′ ∈ [0, T ) and si(e, t) = s∗i (e, t) for all t ∈ [0, T )\{t′}.

If i = ω1(t
′), then Assumptions 4 and 6 imply that depositor i cannot be

served, and hence, his payo� is u(gi(m\si(e), ω3)) or pu(c∗e(θ̂)). Because

u(gi(m\s∗i (e), ω3)) = u(gi(m\si(e), ω3)), the payo� di�erence is p{u(c∗e(θ̂))−
u(gi(m\si(e), ω3))} or (1−p)u(gi(m\si(e), ω3)). If Q(ω−1

3 (i)) ≤ (1−p)θ̂, then

u(gi(m\si(e), ω3)) = u(c∗e(θ̂)); otherwise, u(gi(m\si(e), ω3)) = 0. Because

c∗e(0) > 0, the message s∗i (e) weakly dominates si(e) against M−i. We de�ne

Si(−1) as Si(−1) ≡ {si ∈ Si | si(e, t) = 1, ∀t ∈ [0, T )} and

Mi(−1) ≡ {mi | ∃si ∈ Si(−1),∃η ∈ {e, α, β}, mi = si(η)}.

(2. α-late depositors): Suppose that S(−1) is given. When ηi = α,

Assumption 7(ii) ensures that L(Iθ(α)) > 0. Pick any k ∈ [0, k2] and de�ne

Si(k) ≡ {si ∈ Si(−1) | τ(si(α)) ≥ k}.

Consider a strategy of depositor i, s′i ∈ Si(0), such that τ(s′i(α)) = 0 and

s′i(α, t) = 0 for all t ∈ ∆4. Suppose that there exists a depositor j ∈ Iθ(α)\{i}
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such that τ(sj(α)) = 0. Then, the maximum payo� of depositor i is

pu(c∗e(θ̂)) + (1− p)u
(
gi(m\s′i(α), ω3)

)
− d1. (9)

Let s′′i (α) denote a message such that τ(s′′i (α)) = k2 and s′′i (α, t) = s′i(α, t)

for all t ≥ k2. Then, i's payo� is

u
(
gi(m\s′′i (α), ω3)

)
− d2. (10)

Because gi(m\s′i(α), ω3) = gi(m\s′′i (α), ω3) and the maximum of

gi(m\s′i(α), ω3) is c
∗
e(θ̂), the di�erence of (9) and (10) is

p
(
u(c∗e(θ̂))− u

(
gi(m\s′′i (α), ω3)

))
− (d1 − d2)

≤ pu(c∗e(θ̂))− (d1 − d2)

< 0

because c∗i (0) < R and the value of p. Next, consider a strategy s′i ∈ Si(0)

such that τ(s′i(α)) = 0 and s′i(α, t) = 1 for some t ∈ ∆4. In this case, for

all m ∈
∏

i∈I Mi(−1), if gi(m\s′i(α), ω4) = 0 for all ω4 ∈ Ω4, then the above

reasoning applies and the message s′′i (α) is a more pro�table message for

depositor i. If gi(m\s′i(α), ω4) > 0 for some ω4 ∈ Ω4, then i's maximum

payo� is u(c∗l (θ̂)) − d1. Hence, depositor i can be better-o� by changing

the message to si(α) such that τ(si(α)) = T and si(α, t) = s′i(α, t) for all

t ≥ T . We can easily check that the reasoning for these two cases is valid

for the case in which τ(sj(α)) ∈ (0, k2) for all j ∈ Iθ(α)\{i}. Suppose that

for all j ∈ Iθ(α)\{i}, τ(sj(α)) ∈ ∆3. In this case, Assumption 7 implies

that it is strictly better-o� for depositor i to send a message si(α) such

that τ(si(α)) = T and si(α, t) = 1 for all t ∈ ∆4. Therefore, any strat-

egy s′i ∈ Si(0) such that τ(s′i(α)) = 0 is weakly dominated by a strategy

si ∈ Si(k
′) for some k′ > 0. Applying this reasoning to any k ∈ (0, k2), any

strategy s′i ∈ Si(k) such that τ(s′i(α)) = k is shown to be weakly dominated

by a strategy si ∈ Si(k
′) for some k′ > k. Hence, we obtain a deletion se-

quence {Si(k)}k∈[0,k2] such that any si ∈
∩

k∈[0,k2] Si(k) satis�es τ(si(α)) ≥ k2.
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(3. β-late depositors): Suppose that S(k2) is given. When ηi = β, depos-

itor i deduces that L(Iθ(α)) > 0 because of Assumption 7 and that θ̂ < 1.

Hence, the β-late depositor i rationally expects to obtain c∗l (θ̂) in [T, T ′] for

certain. Let

Si(T ) ≡ {si ∈ Si(k2) | τ(si(β)) = T, si(β, t) = 1, ∀t ∈ [T, T ′]}.

(4. α-late depositors): Suppose that S(T ) is given. For any α-late deposi-

tor i, the strategy si such that si(α, t) = 1 for all t ∈ [T, T ′] weakly dominates

any other strategy in Si(T ) against S−i(T ). Let

Si(T
′) ≡ {si ∈ Si(T ) | τ(si(α)) = T, si(α, t) = 1, ∀t ∈ [T, T ′]}.

The above reasoning shows that any strategy si ∈ Si(T
′) is an iteratively

weakly undominated strategy. Furthermore, for any θ ∈ [0, 1], the message

pro�le s(θ) for any s ∈ S(T ′) achieves the allocation (c∗e(θ), c
∗
l (θ)). Hence, the

provision scheme M∗ implements any e�cient contract c∗ ∈ C∗ in iteratively

undominated strategies. ■

The provision scheme M∗ gathers the state information θ in Phase 1. In

this information gathering, the probability p plays a crucial role. We can

interpret p as the threshold that the bank stops to provide the good before

maturity. For instance, the bank may stop to provide if it observes that a

full withdrawal tender continuously occurs in [0, θ′] for some θ′ < k1. In this

case, we can interpret the probability as p = θ′/k1; the bank concludes that

such a continuous tendering is a signal of self-ful�lling bank runs, and the

early deposit freeze in an environment with aggregate risk implies the bank's

preemptive move to bank runs.

I should note that our result crucially depends on the assumption of no

liquidation cost, as in Diamond and Dybvig (1983).6 If there is a liquidation

cost, our provision scheme M∗ generally fails to implement an e�cient con-

6For a banking model like Diamond�Dybvig with a liquidation cost for investment, see
Cooper and Ross (1998).
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tract. To con�rm this fact, suppose that there is a liquidation cost κ > 0 per

unit liquidation for the investment. Because the bank in our model invests

all funds in E0, we obtain 1− (1− κ)−1 < 0, which implies that the scheme

M∗ fails to achieve the allocation (c∗e(θ), c
∗
l (θ)) if θ is su�ciently close to 1.

Furthermore, even if 1 − θ̂c∗e(θ̂)(1 − κ)−1 > 0 for some θ̂, we cannot o�er

c∗l (θ̂) for 1− θ̂ late depositors because R(1− θ̂c∗e(θ̂)(1− κ)−1) < c∗l (θ̂)(1− θ̂).

Therefore, even in a psychological environment E∗
p , the provision scheme M∗

cannot achieve the allocation (c∗e(θ), c
∗
l (θ)) for some θ.

6 Concluding remarks

This paper revisits the Diamond�Dybvig (1983) model in an environment

with an aggregate risk for states and establishes the positive result that

bank runs can be prevented without government intervention such as deposit

insurance if some late depositors have a socially conscious preference. Notice

that our positive result is obtained even if the number of socially conscious

depositors is low.

However, our positive result relies on the technological assumption that

there is no liquidation cost for investment, as in Diamond and Dybvig (1983).

Because of this assumption, a representative bank can be free from any dis-

tortion by liquidation, and hence, it can o�er an e�cient allocation for any

realized state.
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