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Abstract

In this paper, we analyze investment decision on the ‘entry-exit’ project, which

can be active and suspended by paying some cost, in a duopoly setting. The model

incorporates Dixit (1989) and Huisman and Kort (1999). That is, we propose a new

extension of the model that captures competitive nature in the recent trend. Then we

show it is optimal that the firm must start producing at the beginning of the project,

and the leader is more encouraged to invest in a duopoly than monopoly while the

follower is more discouraged.
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1 Introduction

Real options approach, in other words, investment under uncertainty is classically studied

by Brennan and Schwartz (1985) and McDonald and Siegel (1986), and basically summa-

rized by Dixit and Pindyck (1994). Dixit and Pindyck (1994) provide the most basic model

in Ch.5. When a project investment is irreversible and the project value is uncertainty,

they formulate a firm’s project value maximizing problem as a optimal stopping problem

and show the optimal investment timing, so that they derive the value of the option to

invest. This analysis directly applies the firm’s decision to entry in a new/existing market

if the firm has not enter in the market yet. Dixit and Pindyck (1994) also analyze invest-

ment decision on the project that can be suspended without cost in Ch.6. Furthermore,

∗This paper was previously circulated under the title “Entry and Exit Decisions under Uncertainty in

a Duopoly.”
†Corresponding author. Address: 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan; E-mail:
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Dixit and Pindyck (1994) analyze ‘entry-exit’ decision that the project can be active and

suspended by paying some cost in Ch.7. Note that ‘exit’ means ‘suspend’ in this paper

unlike Alvarez (1998, 1999) which study ‘shut-down’ decision with some cost. Dixit (1989)

and Brekke and Øksendal (1991, 1994) also study entry and exit decisions in detail. Abel

and Eberly (1996) study a firm’s investment problem when investment is characterized by

costly reversibility.

However, the literature above does not consider firms’ competitive nature. In real busi-

ness environment, firms face stiff competition and consider not only their own strategies

but also competitors’ strategies. There are the competitive interactions between com-

peting firms. Then, real options approach is naturally extended to analyze the firms’

competitive nature by using game theory. In case of preemption, there is the risk that the

firm may earn less profit if its competitor invests earlier. Game theory results in that the

firm must invest earlier than monopoly, in contradiction to real options approach. Dixit

and Pindyck (1994) incorporate competitive nature into real options approach properly

at the earliest date in Ch.9. While they investigate an oligopolistic industry, they do not

derive the equilibrium by game theory. On the other hand, Grenadier (1996) applies their

framework to the real-estate investment problem, and succeeds in deriving the equilibrium.

His equilibrium remains the problem that simultaneous investment is eliminated, whereas

Huisman and Kort (1999) extends the theoretical framework by resolving the problem.

While the above literature analyze only the competitive situation by assuming firms

do not have operational options, Takashima et al. (2008) consider symmetric and asym-

metric firms competition with operational options in the electricity market. Entry and

exit decisions in a duopoly are investigated by Lambrecht (2001), in particular, market

entry, company closure and capital structure. Ruiz-Aliseda (2003) and Amir and Lambson

(2003) investigate it by game theoretic approaches.

However, these literature do not analyze the situation of Ch.7 in Dixit and Pindyck

(1994). So, in this paper we analyze investment decision on the entry-exit for a project

with transition costs in a duopoly setting. We assume that two firms are identical and

their roles are endogenously determined. One firm can be leader by investing the project

before the other. The firms can start (enter) the project by investing the initial cost.

However, just investing the project does not enable the firm to do business. We assume

that it incurs the cost to make the project active, that is, sell a product. Furthermore,

the firms can suspend (exit) the project by paying the cost and make the project reactive

(reenter) by paying the cost. The firm ’s aim is to maximize their profit derived from

the project in duopoly. To solve the firms’ problems, we first solve the single firm’s profit

maximizing problem as in Dixit (1989) and Dixit and Pindyck (1994, Ch.7). Next, we

solve each firm’s problem in duopoly. Consequently, we provide the equilibria in the firms’
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investment game. To derive the equilibria, we use the strategy space and equilibrium

concept defined by Huisman and Kort (1999). Then, we show three types of equilibria.

Furthermore, we show numerical examples and comparative static results of the thresholds

which determine the investment, suspend, and reactive timing. From the results we find

that the leader is more encouraged to invest and the follower is more discouraged.

The rest of the paper is organized as follows. Section 2 describes the firm’s prob-

lem. Section 3 provides the equilibria, i.e., the firm’s optimal investment strategy in our

duopoly setting. Next, we present numerical examples in section 4. Then, we discuss some

important results in section 5. Lastly, section 6 concludes the paper.

2 The Model

Suppose that two identical firms consider entering a new market, so that the market is a

duopoly. The two firms are labeled 1 and 2. By index i we refer to an arbitrary firm and

by j to the ‘other firm.’ In order to enter the market, they invest a project with the initial

cost I. We assume that they can sell a product in the market at the moment of investing

the initial cost.

The project can become active by paying some costK, then the firm can produce a unit

flow of output at the variable cost C. Moreover, the project can be suspended by paying

an exit cost E, and the firm can reenter by paying K again at some future time. In this

context, the term ‘reenter’ means that the firm resumes the product salses. The product

will yield the sales according to a downward-sloping inverse demand function D(Qt). Qt

denotes the number of firms which have invested the project. D(·) is a differential function
with D0(·) < 0, which ensures the first mover’s advantage. This market is characterized

by evolving uncertainty in the state of demand, so that the demand is subject to random

shocks derived by the shock variable Xt. Then, the demand function is of the following

form:

Pt = D(Qt)Xt, (1)

where Pt denotes the output price at time t. We assume that Xt follows a geometric

Brownian motion:

dXt = μXtdt+ σXtdWt, X0 = x, (2)

where μ is the instantaneous expected growth rate ofXt, σ (> 0) is the associated volatility,

and Wt is a standard Brownian motion.

The project has three state variables, the demand shock Xt, the number of firms Qt

and discrete variable that indicates whether the project is active (1) or not (0). Let a

right-continuous function with left limits Zt denote the state 0 or 1. The profit function
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of both firms is given by

π(Xt, Qt) =
¡
D(Qt)Xt − C

¢
Zt. (3)

We first consider the situation that the firms already have invested. Then, the firm’s

problem is to choose the timing of making the project active or suspending the project in

order to maximize the expected discounted profit. Let θm be the m-th timing of making

the project active or suspend the project. Suppose Qt = q, the single firm’s value function

is given by

J(x, q) = sup
w∈W

E

"Z ∞
0
e−ρtπ(Xt, q)dt−

∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{θm<∞}

#
, (4)

where ρ (> μ) denotes a discount rate,

w = (θ1, θ2, . . . , θm, . . . ; ζ1, ζ2, . . . , ζm, . . .) (5)

denotes the collection of the stopping time θm and the control of the state ζm = Zθm , W
denotes the collection of the admissible controls and

H(0, 0) = H(1, 1) = 0, (6)

H(0, 1) = K, (7)

H(1, 0) = E. (8)

Equation (4) can be decomposed into the value function of inactive state J0(x, q) and

active state J1(x, q). From Dixit (1989), they are given by

J0(x, q) = G0(q)x
β1 , (9)

J1(x, q) = G1(q)x
β2 +

D(q)x

δ
− C

ρ
, (10)

respectively, where δ = ρ − μ. β1 > 1 and β2 < 0 are respectively the solution to the

following characteristic equation: 1/2σ2β(β − 1) + μβ − ρ = 0. The unknown parameters
G0(q) and G1(q) are found numerically from the value-matching conditions:

J0(X(q), q) = J1(X(q), q)−K, (11)

J1(X(q), q) = J0(X(q), q)− E, (12)

and smooth-pasting conditions:

J 00(X(q), q) = J
0
1(X(q), q), (13)

J 01(X(q), q) = J
0
0(X(q), q), (14)

where X(q) and X(q) are the optimal threshold to reenter and suspend respectively, which

are found from the above conditions.
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Next, we consider the situation that the firms have not invested yet. The firms prob-

lems are to choose the timing of investment in order to maximize the expected discounted

profit. In a duopoly setting, the firm i’s decision problem is given by

V i(x) = sup
τ i∈T

E

"
sup
w∈W

E

"Z τ i∨τ j

τ i∧τ j
e−ρtπ(Xt, 1)dt

−
∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{τ i∧τ j≤θm<τ i∨τ j}

#
1{τ i<τ j}

+ sup
w∈W

E

"Z ∞
τ i∨τ j

e−ρtπ(Xt, 2)dt−
∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{τ i∨τ j≤θm<∞}

#

− e−ρτ iI
#
,

= sup
τ i∈T

E
∙
e−ρτ

i∧τ jJ(Xτ i∧τ j , 1)1{τ i<τ j}

+ e−ρτ
i∨τ j ¡J(Xτ i∨τ j , 2)− J(Xτ i∨τ j , 1)1{τ i<τ j}

¢
− e−ρτ iI

¸
, (15)

where τ i denotes the stopping time for firm i to invest and T denotes the collection of

admissible stopping times. The second equality holds by strong Markov property of Xt.

Since J(x, q) can be decomposed into two states, equation (15) can be rewritten into

V ik (x) = sup
τ i∈T

E
∙
e−ρτ

i∧τ jJk(Xτ i∧τ j , 1)1{τ i<τ j}

+ e−ρτ
i∨τ j ¡Jk(Xτ i∨τ j , 2)− Jk(Xτ i∨τ j , 1)1{τ i<τ j}

¢
− e−ρτ iI

¸
, (16)

V i(x) = max{V i0 (x), V i1 (x)}. (17)

Equation (17) claims that both firms must choose initial state k as well as investment time

τ i.

There are three patterns of investment. If τ i < τ j , firm i can earn higher profit until

firm j enters into the market at τ j . In this case, firm i is called the leader, and its value

function is denoted by Li(x). If τ i > τ j , firm i waits to enter and can earn no profit until

τ i. In this case, firm i is called the follower, and its value function is denoted by F i(x).

If τ i = τ j , both firms earn lower profit since they enter into the market simultaneously.

This case is called simultaneous investment, and the associated value function is denoted

by M i(x).

3 Equilibria

In this section, we solve the firm i’s problem (17) and derive the equilibrium. Since

dynamic games are usually solved backwards, we solve the maximum problem (17) at the
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moment the leader has invested, i.e., τ i ∧ τ j = 0. In what follows, we omit the index i, j
because two firms are identical.

First, we derive the value function of simultaneous investment. In this case, both firms

invest simultaneously such that Qt = 2 for all time, so we have

M(x) = max{J0(x, 2), J1(x, 2)}− I. (18)

Since J0(x, 2) crosses J1(x, 2) at the point x ∈ (X(2),X(2)), let X̃(2) denote the corre-
sponding demand shock value. Then, we have

M(x) =

⎧⎨⎩J0(x, 2)− I = G0(2)x
β1 − I, for x < X̃(2),

J1(x, 2)− I = G1(2)xβ2 +
D(2)x

δ
− C

ρ
− I, for x ≥ X̃(2). (19)

Because the simultaneous investment is not optimal, for x < X̃(2), both firms do not

produce from the beginning of the project until Xt ≥ X(2).
Next, since the leader has already invested the project, the value function of the follower

is

F (x) = sup
τ∈T

E

"
sup
w∈W

E

"Z ∞
τ
e−ρtπ(Xt, 2)dt−

∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{τ≤θm<∞}

#

− e−ρτ I
#
,

= sup
τ∈T

E
h
e−ρτ

¡
J(Xτ , 2)− I

¢i
,

= sup
τ∈T

E
h
e−ρτ

¡
max{J0(Xτ , 2), J1(Xτ , 2)}− I

¢i
, (20)

where τ denotes the stopping time for the follower to invest. Given the constant threshold

of the follower XF, τ is the form of

τ = inf{t > 0 : Xt ≥ XF}. (21)

Equation (20) satisfies the following ODE:

1

2
σ2x2F 00(x) + μxF 0(x)− ρF (x) = 0, (22)

with boundary conditions:

F (0) = 0, (23)

F (XF) = max{J0(XF, 2), J1(X
F, 2)}− I, (24)

F 0(XF) = max{J 00(XF), J 01(X
F)}. (25)

The second condition is called the value-matching condition, and the third is called the

smooth-pasting condition. By solving equation (22) with equation (23)—(25), we have

F (x) =

(
Axβ1 , for x < XF,

J1(x, 2)− I, for x ≥ XF,
(26)
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where A and XF are the solutions of nonlinear simultaneous equation (24) and (25) cor-

responding to J1(x, 2). Note that the optimal threshold for J0(x, 2) does not exist.

Next, we consider the leader’s problem. Suppose that the follower plays the optimal

policy τ , the value function of the leader is

L(x) = E

"
sup
w∈W

E

"Z τ

0
e−ρtπ(Xt, 1)dt−

∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{θm<τ}

#
− I

+ sup
w∈W

E

"Z ∞
τ
e−ρtπ(Xt, 2)dt−

∞X
m=1

e−ρθmH(Zθ−m , Zθm)1{τ≤θm<∞}

##
,

= E
∙
J(x, 1)− I + e−ρτ

¡
J(Xτ , 2)− J(Xτ , 1)

¢¸
,

= max{J0(x, 1), J1(x, 1)}− I + max
k∈{0,1}

E
∙
e−ρτ

¡
Jk(Xτ , 2)− Jk(Xτ , 1)

¢¸
. (27)

Let L̃(x) be the last term of equation (27), it satisfies the following ODE:

1

2
σ2x2L̃00(x) + μxL̃0(x)− ρL̃(x) = 0, (28)

with boundary conditions

L̃(0) = 0, (29)

L(XF) = F (XF). (30)

Notice that since equation (27) is not maximum problem, the smooth-pasting condi-

tion is not necessary, and XF is known. Since J0(x, 1) crosses J1(x, 1) at the point

x ∈ (X(1), X(1)), we define the corresponding demand shock value as X̃(1). By solv-
ing equation (28) with equations (29) and (30), we have

L(x) =

⎧⎪⎨⎪⎩
J0(x, 1) +Bx

β1 − I, for x < X̃(1),

J1(x, 1) +Bx
β1 − I, for X̃(1) ≤ x < XF,

J1(x, 2)− I, for x ≥ XF,

(31)

where

B = (G1(2)−G1(1))(XF)β2−β1 +
D(2)−D(1)

δ
(XF)1−β1 . (32)

Now we are in a position to derive the equilibrium firm’s problem. To this end, we

need the following proposition.

Proposition 1 There exists a unique value for x, which we denote by XL, such that

L(XL) = F (XL), and 0 < XL < XF. (33)

The proof is almost same as Takashima et al. (2008) and omitted. We define the

stopping time

λ = inf{t > 0 : Xt ≥ XL}. (34)
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Unfortunately, XL must be found numerically. Due to proposition 1, we can use the

strategy space and equilibrium concept defined by Huisman and Kort (1999). This concept

can be traced back to Fudenberg and Tirole (1985).

Proposition 2 There are three types of equilibria depending on the value of x.

1. If x ∈ (0,XL], there are two possible outcomes. In the first, firm 1 is the leader and

invests the project at time λ, and firm 2 is the follower and invests at time τ with

probability 1/2. The second is the symmetric counterpart, and the probability that

both firms invest simultaneously is zero.

2. If x ∈ (XL, XF], there are three possible outcomes. In the first, firm 1 is the leader

and invests at time 0, and firm 2 is the follower and invests at time τ with probability
F (x)−M(x)

L(x)+F (x)−2M(x) . The second is the symmetric counterpart. In the third, both firms

invests simultaneously at time 0 with probability L(x)−F (x)
L(x)+F (x)−2M(x) .

3. If x ∈ (XF,∞), then both firms invests at time 0 with probability 1.

The proof is almost same as Takashima et al. (2008) again and omitted. Proposition

2 claims that there is no simultaneous investment where both firms can earn less profit, if

the game starts with low demand shock.

4 Numerical Examples

In this section we numerically calculate the optimal thresholds: X(1), X(1), X(2), X(2),

XL and XF. Furthermore, we present a comparative statics analysis of the thresholds by

changing parameters: volatility σ and the entry cost K. Since volatility σ represents the

degree of uncertainty, it is the most important parameter in a real options model. The

entry cost K is needed only in the entry-exit model. Therefore, we focus these parameters

in this section. We assume that the hypothetical value of the parameters are as follows:

μ = 0.02, σ = 0.20, ρ = 0.04, D(1) = 2, D(2) = 1, C = 5, K = 10, E = 5 and

I = 50. Then, we have the optimal thresholds: X(1) = 1.53, X(1) = 3.93, X(2) = 3.06,

X(2) = 7.87, XL = 3.34 and XF = 11.12.

Figure 1 displays the value functions of the leader, the follower and simultaneous

investment. Their shapes are almost same as Takashima et al. (2008).

Figure 2 displays the comparative statics of the thresholds with respect to σ. Although

the leader’s threshold XL is less than the monopoly restart threshold X(1), the follower’s

threshold XF is much greater than the duopoly restart threshold X(2). This implies that

the leader’s investment is more encouraged to invest in a duopoly than monopoly and the

follower’s is more discouraged.
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Figure 1: The value functions

Figure 2: The comparative statics of the thresholds with respect to σ
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Figure 3: The comparative statics of the thresholds with respect to K

Figure 3 displays the comparative statics of the thresholds with respect to K. Com-

pared with σ, entry cost K has less impact on the thresholds, with the exception of the

entry thresholds X(1) and X(2). In particular, leader’s and follower’s investment thresh-

olds are almost free of the influence of entry cost, which is similar to exit cost E. This

shows that entry and exit costs have impact on the strategies after investment, however,

no impact before investment.

Figure 4 and 5 display the comparative statics of the follower’s and the leaders thresh-

olds with respect to σ, for three cases. The first case (Case 1) is the project without

operational options (Ch.5 in Dixit and Pindyck (1994)), the second case (Case 2) is the

operational option without costs (Ch.6), and the third case (Case 3) is the operational

option with fixed costs (Ch.7 and our model).

In figure 4, Case 3 intermediates between Case 1 and Case 2. In Case 3, K = E = 0

means Case 2, and K = E = ∞ means Case 1 since the option is no longer exercised.

Since the difference between Case 1 and Case 2 is the operational option value, Case 1

coincides Case 2 when σ is near 0. To the contrary, the differences among each option

value become larger when σ is large.

In figure 5, since the leader’s threshold is not optimized, we can not discuss similarly

to the follower’s in figure 4. Although there are no longer orderly relations between Case

1 and Case 2, Case 3 has the smallest thresholds for all σ. This implies the leader’s

investment on the entry-exit project is most encouraged, while the follower ’s is more

discouraged than the project of the operational option without costs.
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Figure 4: The comparative statics of the follower’s thresholds XFwith respect to σ for

three cases

Figure 5: The comparative statics of the leader’s thresholds XL with respect to σ for three

cases
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5 Discussion

Numerical results in the previous section give some important results below.

First, there is the question that the leader suspends the project when the follower

invests. If it is ture, then equation (26) does not hold because Qτ = 1. However, numerical

results show XF is greater than X(1). The leader is sure to activate the project when

x ≥ X(1), so that Qτ = 2. Therefore, we can claim the fact that X(1) < XF ensures the

validity of equation (26).

Next, there is the question that XL is low enough to damage the leader’s value. The

leader is sure to idle the project when x ≤ X(1). If the leader activates the project in this
region, the threat of preemption makes the leader’s value much lower. However, numerical

results show XL is greater than X(1). Therefore, we can claim the optimality of leader’s

investment is ensured by the fact that X(1) < XL.

In addition, since X̃(1) < XL and (X̃(2) <) X(2) < XF, the follower and the leader

must invest the project with the state 1. This describes that there is no reason to incur

the investment cost I only to keep the project idle for some time. We can find the same

property as Dixit and Pindyck (1994, Ch.6).

Due to the above claims, we use proposition 2 in relief. Finally, we explains the firm’s

optimal actions in the equilibrium. We assume that the initial value x is sufficiently low.

Then, the equilibrium is as follows:

1. At the first moment that Xt exceeds X
L, firm i becomes the leader with state 1 with

probability 1/2,

2. when Xt falls below X(1), firm i suspends the project,

3. when Xt exceeds X(1), firm i reenters the project,

4. at the first moment that Xt exceeds X
F (> X(1)), firm j invests with state 1,

5. when Xt falls below X(2), both firms suspend the project,

6. when Xt exceeds X(2), both firms reenter the project.

6 Conclusion

In this paper, we have analyzed investment decision on the entry-exit project in a duopoly

setting. Then we have shown it is optimal that the firm must start producing at the

beginning of the project, and there are no simultaneous investment if the initial demand

shock is sufficiently low. Furthermore, the comparative statics of thresholds imply the

leader is more encouraged to invest and the follower is more discouraged. Entry-exit
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costs, which are the characteristic of this project, have impact on the entry-exit strategies

after investment, however, no impact investment strategies.

For future research, we will analyze the case in which Qt means the supply of products

in the market. It is natural that the supply determines the price, however, Qt could change

after the firm invests the project. Consequently, there is possibility that equation (15) no

longer holds. Furthermore, we will try an abandonment decision in duopoly, similar to

Murto (2004) or Goto and Ohno (2006).
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