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Abstract

This article proposes a modified multilevel Monte Carlo (MMLMC) method and

tests the method in terms of variance estimation. Many MMLMC estimators

can be constructed under the MMLMC framework and therefore we can find the

finest estimator, which has the lowest variance, in numerical experiments. The

numerical results show that many of the MMLMC estimators perform better

than both the original multilevel Monte Carlo (MLMC) estimator and the stan-

dard Monte Carlo estimator and that thinning some of the levels in the MLMC

estimator improves the estimate of variance for European vanilla and Lookback

options pricing.

Keywords: Monte Carlo; multilevel Monte Carlo; variance reduction; option

pricing

1. Introduction

The Monte Carlo method is already a useful computational tool in finance;

however, its computational complexity becomes too large for achieving the re-

quired accuracy. [3] proposed a multilevel Monte Carlo (MLMC) method to

reduce computational complexity and this study tests the MLMC method for

pricing European style options. The MLMC method has been studied in re-

cent years (e.g., variance reduction: see [5] and [8], Quasi Monte Carlo: [1],
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discretization scheme: [2], survey: [4]). We consider a stochastic differential

equation (SDE) of the form

dSt = µ (St, t) dt+ σ (St, t) dWt, 0 ≤ t < T, (1)

where St ∈ Rm, S0 = s is given, T < ∞, Wt ∈ Rd is a standard Brown-

ian motion, and µ : Rm → Rm and σ : Rm → Rm×d are drift and volatil-

ity coefficients, respectively. Let P be a discounted payoff function. In op-

tions pricing, E[P (ST )]means the option price. We denote t0 = 0 and tD =

T and divide the interval [0, T ] in D subintervals of equal lengths, that is,

[t0, t1], [t1, t2], . . . , [tD − 1, tD]; ∆t ≡ tn− tn−1 = T/D for any 1 ≤ n ≤ D. Then

the discretization of {St}t using an Euler scheme with ∆t is given by

Ŝtn+1 − Ŝtn = µ
(
Ŝtn , tn

)
∆t+ σ

(
Ŝtn , tn

)
∆Wtn , n = 0, 1, . . . , D − 1.

Where ∆Wtn = Wtn −Wtn−1
. Under a standard Monte Carlo (SMC) method,

we can compute Y , that is, the approximation of E[P (ST )]

Y = N−1
N∑
i=1

P
(
Ŝ
(i)
T

)
,

where N is the number of simulation paths. Set D = ML. Under the MLMC

method, the option price is constructed by

E[P̂L] = E[P̂0] +

L∑
`=1

E[P̂` − P̂`−1], (2)

where each P` is the approximation of P (ST ) on level `; P̂` means the discretiza-

tion of P (ST ) with a time step h` = T/M `. The coarsest level and the finest

level are zero and L, respectively. The MLMC method uses all levels from zero

to L. The MLMC estimator is uniquely constructed by

Ŷ =

L∑
`=0

Ŷ`,

where

Ŷ` =

 N−1
0

∑N0

i=1 P̂
i
0, (` = 0),

N−1
`

∑N`

i=1

(
P̂ i` − P̂ i`−1

)
, (0 < ` ≤ L).
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Note that Ŷ0 is the estimator of E[P0] usingN0 simulation paths and that each Ŷ`

is the estimator of E[P`−P`−1] using N` paths for ` = 1, 2, . . . , L. We organize

this paper as follows. In Section 2, we propose a modified multilevel Monte5

Carlo (MMLMC) method that allows the construction of multiple estimators.

In Section 3, we illustrate the numerical performance of the MMLMC method

for two European style options valuation. The final section discusses a future

direction for research in this area.

2. Modified multilevel Monte Carlo method10

2.1. Modified multilevel Monte Carlo estimators

We can rewrite the equation (2) as follows.

E[P̂L] = E[P̂`0 ] +

F∑
j=1

E[P̂`j − P̂`j−1
], (3)

where `F = L and `0 ≥ 0. Therefore, we can construct 2L−`0−1 MMLMC

estimators.

Ÿ = Ỹ`0 +

F∑
j=1

Ỹ`j ,`j−1 ,

where

Ỹ`0 = N−1
`0

N`0∑
i=1

P̂ i`0 ,

and

Ỹ`j ,`j−1 = N−1
`j

N`j∑
i=1

(
P̂ i`j − P̂

i
`j−1

)
, 0 < j ≤ F.

The variance of MMLMC estimators is

V [Ÿ ] = N−1
`0
V`0 +

F∑
j=1

N−1
`j
V`j ,`j−1 ,

where V`0 or V`j ,`j−1
is the variance of a single sample at each level.
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2.2. Discussion

The mean squared error (MSE) of the MLMC or MMLMC estimators is

given by

MSEMLMC = E[(Ŷ − E[P ])2] = V[Ŷ ] + (E[Ŷ ]− E[P ])2, (4)

MSEMMLMC = E[(Ÿ − E[P ])2] = V[Ÿ ] + (E[Ÿ ]− E[P ])2, (5)

where the first term on the right-hand side in (4), (5) is the variance of the

estimator and the second term is the square of its bias due to discretization.15

[3] proves the MLMC complexity theorem. It claims that the computational

complexity to attain MSE < ε2 is reduced from O(ε−3) to O(ε−2(ln ε)2) for a

simple case.

Theorem 2.1 (Giles[3]). Let P denote a function of the solution of SDE (1)

for a given Brownian path W (t), and, let P̂` denote the corresponding level20

` of numerical approximation using a numerical discretization with time step

h` = M−`T .

If there exist independent estimators Ŷ` based on N` Monte Carlo samples, and

positive constants α ≥ 1
2 , β, γ, c1, c2, c3 such that

i) |E[P̂` − P ]| ≤ c1hα` ,25

ii) E[Ŷ`] =

E[P̂0], ` = 0,

E[P̂` − P̂`−1], ` > 0,

iii) V [Ŷ`] ≤ c2N`−1hβ` ,

iv) C`, the computational complexity of Ŷ`, is bounded by

C` ≤ c3N`h−1
` ,

then, there exists a positive constant c4 such that for any ε < e−1 there are

values L and N` for which the multilevel estimator

Ŷ =

L∑
`=0

Ŷ`,
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has a mean-square-error with bound

MSE ≡ E
[(
Ŷ − E[P ]

)2]
< ε2

with a computational complexity C with bound30

C ≤


c4ε

−2, β > 1,

c4ε
−2(ln ε)2, β = 1,

c4ε
−2−(γ−β)/α, 0 < β < 1.

Proof. See Giles [3].

If the theorem holds, both the variance and the square of bias error in (4)

have the same upper bound, ε2/2 (See the proof in Giles [3]). In comparison

to the SMC method, the MLMC method reduces the variance, while leaving

the bias unchanged. Variance reduction leads to reduction in computational35

complexity.

Similar to the MLMC complexity theorem in [3], if we use levels `0, `1, . . . , `F

and not levels 0, 1, . . . , L, we understand that the MMLMC version of the com-

plexity theorem holds. We can prove the MMLMC complexity theorem on the

basis of the proof procedure of the MLMC complexity theorem in [3] (See [6]).40

This means that both the variance and the square bias error of each MMLMC

estimator have the same upper bound, ε2/2. If we assume (ii) in the complexity

theorem in [3], the MLMC estimator is an unbiased estimator. Then, due to

(2) and (3), each MMLMC estimator is an unbiased and E[P̂L] = E[Ŷ ] = E[Ÿ ].

Therefore, the bias errors of the MMLMC and MLMC estimators are the same.45

However, V [Ÿ ] and V [Ŷ ] are not always the same except in a special case; for

example, if `0 = 0 and `j − `j−1 = 1, j = 1, 2, . . . , F , the MMLMC estimator

coincides with the MLMC estimator. Here, our focus is the performance com-

parison of the three methods (MMLMC, MLMC, and SMC) in terms of variance

estimation.50
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3. Numerical experiments

In Section 3.1, we discuss the optimal number of simulation paths for the

MMLMC method. In Section 3.2, we test the MMLMC estimators for European

vanilla and Lookback options pricing. We compare the MMLMC method with

the MLMC method and compare the MMLMC method with the SMC method55

in terms of variance reduction.

3.1. Optimal number of simulation paths

Let a computational complexity

C =

F∑
j=0

N`jM
`j =

F∑
j=0

N`jT/h`j . (6)

We regard V [Ÿ ] = N−1
`0
V`0 +

∑F
j=1N

−1
`j
V`j ,`j−1

as a partially differentiable

function of N`j , j = 1, 2, . . . , F . We denote V`j ,`j−1 = V`j , since there is no

possibility of misunderstanding. Then the optimal number of paths for each60

level, minimizing the variance of each MMLMC estimator, are given by N̈∗
`j

as

follows.

Theorem 3.1. For ε > 0, the optimal number of simulation paths that achieve

V [Ÿ ] < ε2/2, are given by

N̈`j =

[
2ε−2

√
V`jh`j

(
F∑
i=0

√
V`i/h`i

)]
, 0 ≤ j ≤ F, (7)

where [n] is the least integer greater than or equal to n. Furthermore, for fixed

computational complexity C∗ > 0, the optimal number of simulation paths that

minimize the variance of the corresponding MMLMC estimator are given by

N̈∗
`j =

 C∗√V`jh`j∑F
i=0 T

√
V`i/h`i

 , 0 ≤ j ≤ F. (8)

Proof. To minimize V [Ÿ ] =
∑F
j=0N

−1
`j
V`j , we apply the Lagrange Multipliers

method. We create the Lagrange equation as follows:

L := L(N`0 , N`1 , . . . , N`F ) =

F∑
j=0

N−1
`j
V`j − λ

C − F∑
j=0

N`jT/h`j

 .
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Set the partial derivative LN`0
, LN`1

, . . . , LF equal to zero,

LN`j
= −N−2

`j
V`j + λT/h`j = 0, j = 0, 1, . . . , F.

Thereby,

N`j =

√
V`jh`j
λT

, j = 0, 1, . . . , F. (9)

If V [Ÿ ] < ε2/2, it holds that

V [Ÿ ] =

F∑
j=0

N−1
`j
V`j =

F∑
j=0

√
λT

V`jh`j
V`j < ε2/2. (10)

Due to (9) and (10), we set

N`j = 2ε−2
√
V`jhj

(
F∑
i=0

√
V`i/h`i

)
, 0 ≤ j ≤ F. (11)

Therefore, we get N̈j = [N`j ]. Due to (6) and (11)

2ε−2
F∑
i=0

√
V`i/h`i =

C∑F
j=0 T

√
V`j/h`j

.

If we fix C = C∗, we get

N̈∗
`j =

 C∗√V`jh`j∑F
i=0 T

√
V`i/h`i

 , 0 ≤ j ≤ F.

Note that if the MMLMC estimator coincides with the MLMC estimator,

(7) is equal to the optimal simulation times used in Section 5 of [3].65

3.2. Numerical results

We set M = 2, `0 = 0, `F = 8, and C∗ = 1, 000, 000× 28. Therefore, we can

test 128 types of MMLMC estimators. We present each result for

dSt = 0.03Stdt+ 0.3StdWt, 0 ≤ t < T,

where S0 = 1 and T = 1. We note that the results of the SMC estimator are

based on 1, 000, 000 simulation paths and 28 time-steps. A European vanilla
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put and a Lookback put options payoffs at time T are max(K − ST , 0) and

max0≤t≤T St − ST , respectively. We set the strike price K = 1. The numerical70

procedure is as follows. First, we set the initial N̈`j = 105. To calculate the

optimal N̈`j , we run the MMLMC method using the initial paths. Second, we

run the MMLMC method using the optimal paths and estimate the variance of

the estimator. We repeat this procedure for all the MMLMC estimators.

Figure 1-2 show that more than 110 types of MMLMC estimators attain75

lower variance than that of the MLMC estimator.

• European vanilla option

In comparison to the MLMC estimator, the finest MMLMC estimator, which

has the lowest variance and is Ÿ = Ỹ0 + Ỹ3,0 + Ỹ5,3 + Ỹ8,5, achieves variance

reduction of about 20 %. The MMLMC estimators reduce variance by 88-96 %80

of the SMC estimator.

estimator estimator construction levels variance

MMLMC (finest) Ÿ = Ỹ0 + Ỹ3,0 + Ỹ5,3 + Ỹ8,5 0, 3, 5, 8 6.83E-10

MMLMC (coarsest) Ÿ = Ỹ0 + Ỹ8,0 0, 8 2.10E-9

MLMC Ŷ =
∑8
`=0 Ŷ` 0,1, ... , 8 8.53E-10

SMC Y - 1.88E-8

Table 1: comparison of variances: European vanilla option

estimator N̈∗
`0

N̈∗
`1

N̈∗
`2

N̈∗
`3

N̈∗
`4

MMLMC (finest) 9.8E7 - - 7.4E7 -

MMLMC (coarsest) 5.7E7 - - - -

MLMC 8.8E7 1.2E7 5.7E6 2.7E6 1.3E6

estimator N̈∗
`5

N̈∗
`6

N̈∗
`7

N̈∗
`8

-

MMLMC (finest) 1.2E6 - - 2.3E5 -

MMLMC (coarsest) - - - 7.8E5 -

MLMC 6.3E5 3.1E5 1.5E5 7.7E4 -

Table 2: optimal number of simulation paths, N̈∗
`j
: European vanilla option
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• Lookback option

In comparison to the MLMC estimator, the finest MMLMC estimator, which is

Ÿ = Ỹ0 + Ỹ3,0 + Ỹ5,3 + Ỹ8,5, achieves variance reduction of little less than 30 %.

The MMLMC estimators reduce variance by 23-81 % of the SMC estimator.

estimator estimator construction levels variance

MMLMC (finest) Ÿ = Ỹ0 + Ỹ3,0 + Ỹ5,3 + Ỹ8,5 0, 3, 5, 8 4.33E-9

MMLMC (coarsest) Ÿ = Ỹ0 + Ỹ8,0 0, 8 1.77E-8

MLMC Ŷ =
∑8
`=0 Ŷ` 0,1, ... , 8 6.02E-9

SMC Y - 2.32E-8

Table 3: comparison of variances: Lookback option

85

estimator N̈∗
`0

N̈∗
`1

N̈∗
`2

N̈∗
`3

N̈∗
`4

MMLMC (finest) 3.9E7 - - 9.5E6 -

MMLMC (coarsest) 1.9E7 - - - -

MLMC 3.3E7 1.2E7 6.6E6 3.5E6 1.8E6

estimator N̈∗
`5

N̈∗
`6

N̈∗
`7

N̈∗
`8

-

MMLMC (finest) 1.8E6 - - 3.3E5 -

MMLMC (coarsest) - - - 9.2E5 -

MLMC 9E5 4.6E5 2.3E5 1.1E5 -

Table 4: optimal number of simulation paths, N̈∗
`j
: Lookback option

4. Concluding Remarks

The numerical results show that all the MMLMC estimators perform better

than the SMC estimator. The results also show that more than 110 types of

MMLMC estimators perform better than the MLMC estimator and that the

finest estimator reduces variance by more than 20 % of the MLMC estimator in90

two European style options pricing. Thinning some of the levels in the MLMC

estimator improves the estimate of variance. We conjecture that the MMLMC

method is beneficial for other options valuation. Future research can have three
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directions. It can apply the MMLMC method to other options pricing tested

in [7] or it can apply the method to American options and CVA valuation or95

it can estimate the optimal number of simulation paths using other methods

apart from Lagrange Multipliers, such as genetic algorithms.
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