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Abstract

We extend a characterization theorem of the set of social choice functions
calledvoting by issuesby Nehring and Puppe [12] in two directions: i) We charac-
terize the set of social choice functions calledgeneralized voting by issues. ii) The
characterization is done without the assumption that prefrences are strict.

Since Nehring and Puppe’s framework includes the models in Barberà, Son-
nenschein and Zhou [5] (the set of alternatives is the power set of a set), Barberà,
Gul and Stacchetti [2] (the set of alternatives is the product of lines) and Danilov
[7] (the set of alternatives has a tree structure), our result extends the character-
izations in these papers to the case indifference is admitted. While the proof in
Nehring and Puppe [12] involves the “reduction” to the subspace, our proof is
based on the simple induction argument.
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1 Introduction

The Gibbard-Satterthwaite theorem states that every strategy-proof and onto social
choice function is dictatorial when the set of preferences is unrestricted. In contrast
to this negative result, it is known that under the restriction of preferences, very rich
class of strategy-proof social choice functions emerges. One of the most important
restricted preference domains in the literature is the single-peaked domain. The break-
through of the literature on social choice with single-peaked preferences achieved by
Moulin [10]. He identified the set of strategy-proof and onto social choice functions
on the line as a generalization of the median voter rule. Since Moulin [10] provides the
elegant characterization, the literature on voting uncovered the class of strategy-proof
and onto social choice functions under the assumption of single-peaked preferences.
For the case the set of alternatives is finite, previous works by Barberà, Sonnenschein
and Zhou [5] (the set of alternatives is the set of a power set), Barberà, Gul and Stac-
chetti [2] (the set of alternatives is the product of lines), Schummer and Vohra [13] (the
set of alternatives has a tree structure1 ) and Danilov [7] (the set of alternatives has a
tree structure) identify the set of strategy-proof and onto social choice functions un-
der the assumption of single-peakedness. Remarkably, it turned out that strategy-proof
and onto social choice functions in these models, especially in first three models, have
common structure similar to that had been found by Moulin [10].

Nehring and Puppe [12] unify these models under the abstract framework of(di-
chotomic) property spaceandsingle-peaked preferences. We follow their wide-range
model. Before introducing their framework, let us look at the concept of single-
peakedness in the concrete models above. Although each concrete model has a dif-
ferent structure on the set of alternatives, a single-peaked preference in these models is
understood as a preference satisfying following two conditions :

i) There exists an ideal alternativep.
ii) If for distinct alternativesx andy, x is at least as “similar” to the ideal alter-

nativep asy is to p, thenx is preferred toy.

The “similarity” is the key concept to describe the single-peakedness. It is defined
by depending on the structure endowed on the set of alternatives. When the set of
alternatives is the line (linearly ordered set), the linear order gives rise to a natural
criterion of similarlity: that is,x is at least as similar top asy is to p if y ≤ x ≤ p or
p ≤ x ≤ y. In the same way, when the set of alternatives is the product of lines,x is at
least as similar top asy is to p if for each coordinatej, y j ≤ x j ≤ p j or p j ≤ x j ≤ y j .
Finally, when the set of alternatives is a tree,x is at least as similar top asy is to p if x
lies on the path fromp to y.

Nehring and Puppe provide a general structure on the set of alternatives called a
collection of properties, and they call the spaces equipped with a collection of proper-
ties aproperty space. Since a linearly ordered space, the product of linearly ordered
spaces and a tree can be represented by a property space, it is an extreme generalization
of the spaces dealt in the literature concerning the single-peaked preferences.

1For the precise definition of the tree, see section 4.
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In Nehring and Puppe [12], a property is simply represented by a non-empty proper
subset of the set of alternativesX. Any elements in the set are considered to have the
property, and elements in the complement are not. Roughly speaking, the structure of
properties is a collection of non-empty proper subsets ofX. Properties are considered
to be dichotomic in their model (“left or right”, “high or low”, and so on.). A property
space gives rise to a criterion of the similarlity by the following way: given a collection
of properties,x is at least as similar to the ideal alternativep asy is to p if y has a
property in common with the ideal alternativep, then x also has the property. This
expression of the similarlity concept coincides with the natural one discribed above in
the concrete models under the apropriate property space representation of the space in
question.

On this abstract setting, Nehring and Puppe [12] provide a characterization of the
set of social choice functions calledvoting by issues. They show that the set of voting
by issues coincides with the set of onto social choice functions satisfying strategy-
proofness. Since the models in Barberà, Sonnenschein and Zhou [5], Barberà, Gul
and Stacchetti [2] and Danilov [7] are special cases of their general model, the charac-
terization theorem of voting by issues can be seen as a comprehensive result of these
concrete models. It is worthwhile to notice that all of these previous results are ob-
tained under the assumption that each voter has a strict preference. But preferences
with indifference are quite natural in some concrete models. For example, consider the
society facing the problem choosing a location of a public facility (park, library, for
instance). Our abstract framework includes two types of this problem. First type is the
location problem on the plane, and second type is the location problem on the tree. In
these models, for instance, voters may have a preference which only cares about the
“distance” from the ideal location. In the plane, the distance from the ideal location
to a point is simply measured by the Eucledian metric. In the tree, the distance from
the ideal location to a point is measured by the number of vertices on the path between
them. While the previous results are obtained by excluding this type of preferences,2

in this paper, we extend the characterization theorem by Nehring and Puppe [12] to the
case that indifference is admitted. Moreover, we characterize the set of social choice
functions which we callgeneralized voting by issues. It includes many not necessarily
onto social choice functions satisfying strategy-proofness.

A somewhat technical contribution is in proofs. While the proof of the character-
ization theorem in Nehring and Puppe [12] involves the “reduction” to the subspace,
our proof is based on the simple induction argument. Later, we compare the proof
technique emplyed in Nehring and Puppe [12] with that of ours.

This paper is organized as follows. In section 2, we introduce the Nehring and
Puppe’s abstract model. The definition of social choice functions to be characterized
and axioms are also given in this section. In section 3, we state our main result. Section
4 offers concrete models captured in our abstract framework. Section 5 concludes the

2Schummer and Vohra [13] also consider the location problem on a tree in which this type of preferences
are admitted. Since they restrict the attention to the case votersalwayshave a preference which cares about
the distance from the idel location, their result can not be applied to some important cases. For example, the
case in which the set of admissible preferences includes all logically possible single-peaked preferences is
excluded in their model. Because of the domain conditions employed in Schummer and Vohra [13] and ours,
their results and that of ours are independent.
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paper. The appendix offers a proof of Proposition 2.

2 General Model

2.1 Property space and single-peaked preferences

We follow the abstract model proposed in Nehring and Puppe [12]. LetN = {1, · · · ,n}
be the set of voters. We assume that 2≤ n < +∞. Let X be the set of alternatives.
We assume that 2≤ #X < +∞. A special structure is endowed onX. As mentioned in
Introduction, the structure of properties is a collection of non-empty proper subsets of
X. In addition to this, we assume that any two alternatives can be distinguished by a
property.

Definition. LetH ⊆ 2X. The pair(X,H) is a property space ifH satisfies the follow-
ing conditions H1, H2 and H3.

H1. ∅ < H .
H2. ∀H ∈ H ,Hc ∈ H .
H3. ∀x, y ∈ X(x , y), ∃H ∈ H s.t. x∈ H ∧ y ∈ Hc.

Throughout the paper, except for in the concrete models in section 4, we fix the struc-
ture of propertiesH . The following is the notion of similarity derived from (X,H).

Definition. For all x, y and z in X, y is at least assimilar to x as z is to x if

∀H ∈ H ,
[
{x, z} ⊆ H ⇒ y ∈ H

]
.

The criterion of similarlity induced by (X,H) is the ternary relation defined as
follows:

TH = {(x, y, z) ∈ X × X × X | ∀H ∈ H , {x, z} ⊆ H ⇒ y ∈ H}

For the simplicity, we denoteTH by T. 3 The set of alternatives at least as similar tox
asy is to x denoted by [x, y]. That is, [x, y] = {a ∈ X | (x,a, y) ∈ T}. 4

3The ternary relationT satisfies the following four conditions.
T1 (Reflexivity).∀x, y ∈ X, (x, x, y) ∈ T ∧ (x, y, y) ∈ T.
T2 (Symmetry).∀x, y, z ∈ X, (x, y, z) ∈ T ⇒ (z, y, x) ∈ T.
T3 (Transitivity).∀x, y, z, x′, y′ ∈ X, (x, x′, z) ∈ T ∧ (x, y′, z) ∈ T ∧ (x′, y, y′) ∈ T ⇒ (x, y, z) ∈ T.
T4 (R-antisymmetry).∀x, y, z ∈ X, (x, y, z) ∈ T ∧ (x, z, y) ∈ T ⇒ y = z.

In addition to above conditions, by T1 and T4, we have

∀x, y ∈ X, (x, y, x) ∈ T ⇒ y = x.

By T2 and T4, we have L-antisymmetry

∀x, y, z ∈ X, (x, y, z) ∈ T ∧ (y, x, z) ∈ T ⇒ x = y.

4Let x, y ∈ X. The following four statements are true.
(i). {x, y} ⊆ [x, y].
(ii). [ x, y] = [y, x].
(iii). ∀u, v ∈ [x, y], [u, v] ⊆ [x, y].
(iv). x , y⇒ ∃z ∈ [x, y]\{x} s.t. [x, z] = {x, z}.
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The set of complete and transitive binary relations onX is denoted byR. An ele-
ment ofR is called a preference. For a preferenceR, P andI denote the strict part and
the indifferent part ofR. The set of anti-symmetric preferences is denoted byP. For
eachR ∈ R, each non-empty subsetY ⊆ X, τ(R,Y) = {x ∈ Y | ∀y ∈ Y, xRy}. That is,
τ(R,Y) is the set of most desirable alternatives inY with respect toR. For eachR ∈ R,
if τ(R,X) is the singleton, the element of it is denoted byr1(R). For eachR ∈ R, if
R hasr1(R) andτ(R,X\{r1(R)}) is the singleton, the element of it is denoted byr2(R).
The set of admissible preferences is denoted byD. D is a subset ofR.

A profile of preferences, or simply aprofile, is a list of voters’ preferences. Pro-
files are denoted by symbolsR, R̃, R̂ etc. The set of admissible profiles is denoted by
DN. For each profileR = (R1, · · · ,Rn), eachi ∈ N, the subprofile obtained by remov-
ing i’s preference is denoted byR−i , that is,R−i := (R1, · · · ,Ri−1,Ri+1, · · · ,Rn). It is
convenient to write the profile (R1, · · · ,Ri−1, R̂i ,Ri+1, · · · ,Rn) as (R̂i ; R−i). A mapping
fromDN to X is called asocial choice function.

Now, we introduce the notion of single-peakedness. It is characterized by two
features; i) it has an ideal alternative, and ii) for allx, y ∈ X, if x is at least as similar to
the ideal alternative asy is to the ideal alternative, thenx is preferred toy.

Definition. A preference R∈ R is single-peaked with respect to T if there exists a
point, called the peak of R, p(R) ∈ X such that

∀x, y ∈ X(x , y), (p(R), x, y) ∈ T ⇒ xPy.

The set of single-peaked preferences is denoted byRS. We assume that admissi-
ble preferences are single-peaked: that is,D ⊆ RS

5. We also assume the following
richness conditions R1, R2 and R3 on admissible preference domain.

R1.∀x, y ∈ X(x , y),
[
[x, y] = {x, y} ⇒ ∃R ∈ D s.t. r1(R) = x∧ r2(R) = y

]
.

R2.∀x, y, z ∈ X,
[
z < [x, y] ⇒ ∃R ∈ D s.t. r1(R) = x∧ yPz

]
.

R3.∀x ∈ X, ∃R ∈ D ∩ P s.t. r1(R) = x.
R1 and R2 are conditions employed in Nehring and Puppe [12]. They also assume that
preferences are strict. Hence, the domain condition employed in Nehring and Puppe
[12] is R1, R2 andD ⊆ P. Obviously, our domainD satisfying R1, R2 and R3 is not
necessarily included inP. Moreover,D ∩ P does not satisfy the domain condition in
Nehring and Puppe [12] in general.

2.2 Voting by issues

A generalized family of winning coalitions (GFW) on propertyH ∈ H WH is a
subset of 2N satisfying

∀W ∈ WH ,∀W′ ⊆ N,
[
W ⊆W′ ⇒W′ ∈ WH

]
.

If a GFWWH satisfies the following condition, we simply call it afamily of winning
coalitions (FW):

WH , ∅ and∅ <WH .

5Only in subsection 4.1, we do not assume that admissible preferences are single-peaked preferences.
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A structure of generalized family of winning coalitions (SGFW)on property space
(X,H) is a family ofGFWsW = {WH}H∈H satisfying

∀H ∈ H ,∀W ⊆ N,
[
W ∈ WH ⇔Wc <WHc

]
.

If a SGFW W = {WH}H∈H consists ofFWs,W is simply called astructure of
family of winning coalitions (SFW).

For eachSGFWW = {WH}H∈H , fW : Xn → 2X is defined as follows: for each
ξ ∈ Xn,

x ∈ fW(ξ)⇔
[
∀H ∈ H ,

{
x ∈ H ⇒ {i ∈ N | ξi ∈ H} ∈ WH

}]
.

Remark 1. ∀ξ ∈ Xn,# fW(ξ) ≤ 1. 6

Definition. A SGFWW = {WH}H∈H is consistent if

∀ξ ∈ Xn, fW(ξ) , ∅.

Definition. LetW = {WH}H∈H be a consistentSGFW. The generalized voting by
issues FW is defined as follows:

∀R ∈ DN, FW(R) ∈ fW(p(R1), · · · , p(Rn)).

IfW = {WH}H∈H is a consistentSFW, FW is simply called a voting by issues.

Remark 2. LetW = {WH}H∈H be a consistentSGFW.

∀H ∈ H ,∀R ∈ DN,
[
FW(R) ∈ H ⇔ {i ∈ N | p(Ri) ∈ H} ∈ WH

]
.

2.3 Axioms

In this subsection, we introduce our axioms. LetF be our generic notation of social
choice function. First axiom requires that one can not be better off by misreporting
one’s preference.

Strategy-proofness (SP): for allR = (R1, · · · ,Rn) ∈ DN, all i ∈ N, and all R̃i ∈ D,
F(R) RiF(R̂i ; R−i).

Remark 3. Let a social choice function F be SP. Then, F is unanimous on F(DN).
That is,

∀R ∈ DN,
[
p(R1) = · · · = p(Rn) ∈ F(DN)⇒ F(R) = p(R1)

]
.

Peak-onliness (PO): for allR, R̃ ∈ DN, (p(R1), · · · , p(Rn)) = (p(R̃1), · · · , p(R̃n)) im-
plies F(R) = F(R̃) .

Peak-monotonicity (PM): for allR, R̃ ∈ DN, all H ∈ H , F(R) ∈ H and {i ∈ N |
p(Ri) ∈ H} ⊆ {i ∈ N | p(R̃i) ∈ H} implies F(R̃) ∈ H.

6For a proof of remark 1, see Fact 3.1. in Nehring and Puppe [12].
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3 Main Result

Proposition 1. A social choice function F is peak-monotonic if and only if F is a
generalized voting by issues.

Proof. Same as the proof of Proposition 3.1. in Nehring and Puppe [12]. �

Definition. A subset Y⊆ X is gated if

∀x ∈ X,∃γY(x) ∈ Y,∀y ∈ Y, γY(x) ∈ [x, y].

The elementγY(x) is called the gate ofY to x.7 The gateγY(x) is simply denoted
by γ(x) when there is no confusion. A gated setY has an important property such that

∀R ∈ RS, τ(R,Y) = {γ(p(R))}.

An interval [x, y] is an example of a gated set in the models described in subsection
4.2, 4.3 and 4.4.8 Note that the universal setX is also an example of gated set.

Proposition 2. Suppose that a social choice function F is strategy-proof. Then, F has
gated range if and only if F is peak-only.

A proof of Proposition 2 is given in Appendix. The following is our characteriza-
tion of the generalized voting by issues.

Theorem. A social choice function F which has gated range is strategy-proof if and
only if F is a generalized voting by issues.

Proof. Nehring and Puppe [12] show thatPM is equivalent to the combination ofSP
andPO 9. Therefore, we have done by Proposition 1 and 2. �

As noted in subsection 2.1,D does not have subdomain satisfying Nehring and
Puppe’s domain condition in general. Therefore, the proof of Theorem does not de-
pends on the Nehring and Puppe’s characterization theorem. The following is a result
also obtained in Nehring and Puppe [12] under the assumption that preferences are
strict. As is mentioned in Introduction, since their general framework includes the
models in Barber̀a, Sonnenschein and Zhou [5], Barberà, Gul and Stacchetti [2] and
Danilov [7], Corollary 1 extends the characterizations in these papers to the case in-
difference is admitted. As noted before, since the universal setX is an example of
gated set, onto social choice functions satisfy the range conditions in Proposition 2 and
Theorem.

Corollary 1. An onto social choice function F is strategy-proof if and only if F is a
voting by issues.

Note that since our result doesnot exclude the caseD ⊆ P, our result implies
Theorem 2 in Nehring and Puppe [12].

7If Y is gated, for allx, y ∈ Y, [x, y] ⊆ Y.
8The spaces described in these models are examples ofmedian spaces. See Nehring and Puppe [12].
9See Proposition 3.2. in [12]. Their proof of Proposition 3.2 is valid for the case indifference is admitted.
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4 Applications

4.1 The Gibbard-Satterthwaite theorem

In this subsection, we give a generalized result of Corollary 1 in Nehring and Puppe
[12]. Throughout this subsection, we assume thatD̃ is a subset ofR that may include
non-single-peaked preferences. A social choice functionF̃ : D̃N → X is strategy-proof
if

∀R = (R1, · · · ,Rn) ∈ D̃N,∀i ∈ N,∀R̃i ∈ D̃, F̃(R) Ri F̃(R̂i ; R−i).

A social choice functioñF : D̃N → X is dictatorial if

∃i0 ∈ N s.t. ∀R = (R1, · · · ,Rn) ∈ D̃N, F̃(R) ∈ τ(Ri0,X).

Corollary 2. Suppose that#X ≥ 3 and (X,H) is a property space in which only the
universal set and all singletons are gated. Suppose also thatD̃ includes a rich single-
peaked preference domainD. If a social choice functioñF : D̃N → X is SP and onto,
thenF̃ is dictatorial.

Proof. DefineF := F̃ |DN . By Corollary 1,F is a voting by issues. Hence,F = FW for
some consistentSFWW. We can prove thatFW is dictatorial following the elegant
proof for Corollary 1 in Nehring and Puppe [12]. Leti0 ∈ N be the dictator ofFW.

Next, we prove thati0 is a dictator ofF̃. Suppose the contrary. Assume that there
existsR = (R1, · · · ,Rn) ∈ D̃N such thatF̃(R) < τ(Ri0,X). Let R̃i0 ∈ D with p(R̃i0) ∈
τ(Ri0,X). If F̃(R̃i0; R−i0) = p(R̃i0), i0 can manipulatẽF. Hence,F̃(R̃i0; R−i0) , p(R̃i0).
Let R̃ ∈ D be a preference whose peak isF̃(R̃i0; R−i0). Let R̃−i0 be the preference profile
other thani0 in which each voter’s preference is̃R. Then, bySPof F̃, F̃(R̃i0; R−i0) =
F̃(R̃i0; R̃−i0) = F(R̃i0; R̃−i0). This contradicts the fact thati0 is the dictator ofF. �

Barber̀a and Peleg [4] prove that, in a metric space, if for anyx, y ∈ X(x , y), there
exists a continuous preference which ranksx first andy second, then a strategy-proof
and onto social choice function is dictatorial. Thus, Corollary 2 is an alternative proof
of their general result via voting by issues.

4.2 Choosing a subset

Let A be a non-empty finite set. Elements ofA are denoted by symbolsα, β, γ etc. Bar-
ber̀a, Sonnenschein and Zhou [5] consider the social choice problem in which society
chooses a subset ofA. The set of alternativesX is the power set ofA. That is,X := 2A.
Elements ofX are denoted by symbolsx, y, zetc.

Definition. For eachα ∈ A, Hα := {x ∈ X | α ∈ x}. That is, Hα is the collection of
subsets of A includingα. We defineH = {Hα | α ∈ A} ∪ {Hc

α | α ∈ A}.

It is easy to show that (X,H) is a property space. In this space, for eachp, x, y ∈ X,
x is at least as similar top asy is to p if and only if

∀α ∈ A,
[{
α ∈ p and α ∈ y⇒ α ∈ x

}
and
{
α < p and α < y⇒ α < x

}]
.

8



Barber̀a, Sonnenschein and Zhou [5] show that the set ofSPand onto social choice
functions onPN (or the set of strict preferences which have additive representation) is
the set of voting by issues10. Note that in this model, anySGFW are consistent.

4.3 Location problem on the product of lines

4.3.1 Special case: Location problem on the line

Let X := {1,2, · · · ,m}. Suppose thatm is greater than or equal to 2.

Definition. For each x ∈ X\{1}, Hx := {y ∈ X | y ≥ x}. For each x ∈ X\{m},
Hx := {y ∈ X | y ≤ x}. We defineH = {Hx | x ∈ X\{1}} ∪ {Hx | x ∈ X\{m}}.

It is easy to verify that (X,H) is a property space. In this space, for eachp, x, y ∈ X,
x is at least as similar top asy is to p if and only if

y ≤ x ≤ p or p ≤ x ≤ y.

Moulin [10] and Ching [6] show that the set ofSPand onto social choice functions is
the set of voting by issues.

4.3.2 General case

Let mbe a natural number. DefineM = {1,2, · · · ,m}. For eachj ∈ M, mj be a natural
number greater than or equal to 2. LetX j be the set of natural numbers{1,2, · · · ,mj}.
DefineX := Π j∈MX j . For eachj ∈ M, let (X j ,H j) be the property space defined in the
previous subsection. We defineH = {H j0 × Π j, j0X j | j0 ∈ M,H j0 ∈ H j0}.

It is easy to verify that (X,H) is a property space. In this space, for eachp, x, y ∈ X,
x is at least as similar top asy is to p if and only if

∀ j ∈ M, y j ≤ x j ≤ p j or p j ≤ x j ≤ y j .

Barber̀a, Gul and Stacchetti [2] show that the set ofSPsocial choice functions onPN

which have gated range is the set of generalized voting by issues. Note that in this
model,SGFW is consistentif and only if

∀H, H̃ ∈ H ,H ⊆ H̃ ⇒WH ⊆ WH̃ .

4.4 Location problem on the tree

Let E be a subset of 2X with S ∈ E ⇒ #S = 2. (X,E) is called a (simple)graph. An
element ofE is called an edge. A sequence{xk}Kk=1 in X is a walk from x1 to xK in
(X,E) if for eachk ∈ {1,2, · · · ,K −1}, {xk, xk+1} ∈ E. A sequence{xk}Kk=1 in X is apath

10Barber̀a, Sonnenschein and Zhou [5] describe the preferences inP as separable preferences. In this
model, separability and single-peakedness are equivalent when preferences are strict. These two concepts do
not coincide in the model with indifference. Ju [9] characterize the set of social choice functions satisfying
SPandnull-independenceon separable weak preference domain. Although both our model and Ju’s model
are extension of Barberà, Sonnenschein and Zhou’s model to the model with indifference, the domains of
preferences are different.
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from x1 to xK in (X,E) if it is a walk satisfying #{x1, · · · , xk−1} = k− 1. A walk {xk}Kk=1
is closed if x1 = xK . A closed path is called acycle.

We assume that (X,E) is a tree; that is, following two statements hold.
(i) (Connectedness) For all x, y ∈ X, there exists a walk{xk}Kk=1 such thatx1 = x

andxK = y.
(ii) (No cycle) There exists no closed path.
Note that for eachx, y ∈ X, there exists an unique path fromx to y in this space.

Note also that for each edgee ∈ E, the subgraph (X,E\{e}) has exactly two connected
components. That is, for each edgee = {x, y} ∈ E, one of the connected components
in (X,E\{e}) includesx and the other component includesy. The former is denoted by
He

x and the latter is denoted byHe
y. We defineH = {He

x | e= {x, y} ∈ E}.
It is easy to verify that (X,H) is a property space. In this space, for eachp, x, y ∈ X,

x is at least as similar top asy is to p if and only if xlies on the path fromp to y.
Danilov [7] characterizes the set ofSPandPO social choice functions as the set

of social choice functions generated by constant mappings and dictatorial mappings.11

We also characterize the same set by the set of generalized voting by issues without the
assumption that admissible preferences are strict. Note that in this model,SGFW is
consistentif and only if

∀H, H̃ ∈ H ,H ⊆ H̃ ⇒WH ⊆ WH̃ .

5 Conclusion

In this paper, we extend a characterization theorem of voting by issues by Nehring and
Puppe [12] to the case indifference is admitted. Since their framework includes the
models in Barber̀a, Sonnenschein and Zhou [5], Barberà, Gul and Stacchetti [2] and
Danilov [7], our result extends the characterizations in these papers to the case indif-
ference is admitted. Moreover, we characterized generalized voting by issues which
includes not necessarily onto social choice functions.

Although our theorem is a generalization of many important previous results, it is
important to notice that our result does not cover Theorem 3 in Barberà, Masśo and
Neme [3]. Theorem 3 says that ifX is the product of lines andD = RS ∩ P, thenany
strategy-proof social choice function can be written as a voting by issues on its range.
More precisely, ifF : DN → X is strategy-proof, then there exists a consistentSFW
W on the subspace (F(DN),HF(DN)) such that

F(R) = fW(τ(R1, F(DN)), · · · , τ(Rn, F(DN))).12

Whether this result holds in Nehring and Puppe’s general setting is an open question.

11For a precise description, see Danilov [7].
12Since eachRi is a strict preference,τ(Ri , F(DN)) is a singleton. Here, we abuse the notation to represent

the element ofτ(Ri , F(DN)). Note thatfW is a mapping from (F(DN))N to F(DN).
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Appendix : Proof of Proposition 2.

In the Appendix, we provide a proof of Proposition 2. The proof follows several lem-
mas. Lemma 1 says that for anyx, y ∈ X, we have a sequence{zk}Kk=1 in [x, y] such that
the first point isx, and the end point isy, and each point is “adjacent” to the next point;
that is, there is no point between them.

Lemma 1. Let x, y ∈ X(x , y). There exists a finite sequence{zk}Kk=1 on [x, y] satisfying
the following two conditions.

(i). z1 = x ∧ zK = y ∧ ∀k ∈ {1, · · · ,K}\{1,K}, zk ∈ [zk−1, y]\{zk−1}.
(ii). ∀k ∈ {1, · · · ,K − 1}, [zk, zk+1] = {zk, zk+1}.

Proof. Definez1 := x. As noted before,

∃z2 ∈ [z1, y]\{z1} s.t. [z1, z2] = {z1, z2}.

Suppose thatzk satisfieszk , y. Then,

∃zk+1 ∈ [zk, y]\{zk} s.t. [zk, zk+1] = {zk, zk+1}.

For some stepK, we havezK = y. Otherwise,

[z1, y] ) [z2, y] ) [z3, y] ) · · · .

But this contradicts the fact [z1, y] is finite. �

For the description of lemmas below, we define the notion of option set originally
introduced by Barberà. 13

Definition. Let F be a social choice function. For each i∈ N, and Ri ∈ D, R−i ∈
DN\{i},

OF
−i(R

i) = {x ∈ X | ∃R̃−i ∈ DN\{i} s.t. F(Ri ; R̃−i) = x},
OF

i (R−i) = {x ∈ X | ∃R̃i ∈ D s.t. F(R̃i ; R−i) = x}.

Lemma 2 and 3 below are slightly generalized version of Fact B.1. and Lemma
B.2. in Nehring and Puppe [12]. Proofs are based on the same technique given by
Nehring and Puppe [12].

Lemma 2. Let N= {1,2}. Suppose that a social choice function F is SP and F(DN) is
gated. Let i∈ N and Ri ∈ D. Let j ∈ N\{i}.

∀x ∈ OF
j (Ri), ∀y ∈ [x, p(Ri)] ∩ F(DN), y ∈ OF

j (Ri).

Proof. Without loss of generality, suppose thati = 1 and j = 2. Pickx ∈ OF
2 (R1) and

y ∈ [x, p(R1)] ∩ F(DN) arbitrarily. If x = y, we have done. Suppose thatx , y.

Case 1. [x, y] = {x, y}
13For example, see Barberà [1].
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By contradiction. Suppose thaty < OF
2 (R1). By R1,

∃Ryx ∈ D s.t.r1(Ryx) = y ∧ r2(Ryx) = x.

By SPand Remark 3,F(R1,Ryx) = x andF(Ryx,Ryx) = y. Sincey ∈ [x, p(R1)]\{x} and
single-peakedness ofR1, yP1x. Therefore,

F(Ryx,Ryx)P
1F(R1,Ryx).

This contradicts the assumptionF is SP.

Case 2. [x, y] , {x, y}.
By Lemma 1, we have a sequence{zk}Kk=1 on [x, y] (⊆ [x, p(R1)]) satisfying condi-

tion (i) and (ii) in Lemma 1. Sincex, y ∈ F(DN) andF(DN) is gated, [x, y] ⊆ F(DN).
Therefore,{zk}Kk=1 is a sequence on [x, p(R1)] ∩ F(DN). Sincez1 = x ∈ OF

2 (R1), by
Case 1we havez2 ∈ OF

2 (R1). By induction, we havey = zK ∈ OF
2 (R1). �

Lemma 3. Suppose that a social choice function F is SP and F(DN) is gated. Then,

∀i ∈ N,∀Ri , R̃i ∈ D,
[
p(Ri) = p(R̃i)⇒ OF

−i(R
i) = OF

−i(R̃
i)
]
.

Proof. Without loss of generality, suppose thati = 1. Definex′ := p(R1)(= p(R̃1)) and
x := γ(x′).

Case 1. N = {1, 2}
By contradiction. Without loss of generality, suppose that

∃y ∈ OF
2 (R1) s.t.y < OF

2 (R̃1).

Claim 1.1. x ∈ OF
2 (R̃1).

SinceOF
2 (R̃1) , ∅, we can take an alternativez ∈ OF

2 (R̃1). Becausez ∈ F(DN) and
F(DN) is gated,

γ(x′) ∈ [z, x′] = [z, p(R̃1)].

Therefore, we havex ∈ [z, p(R̃1)]∩F(DN). By Lemma 2,x ∈ OF
2 (R̃1). (Proof of Claim

1.1. ends.)

By Claim 1.1.,y , x. By Lemma 1, we have a sequence{zk}Kk=1 on [y, x] satisfying
the following two conditions.

(i). z1 = y ∧ zK = x ∧ ∀k ∈ {1, · · · ,K}\{1,K}, zk ∈ [zk−1, y]\{zk−1}.
(ii). ∀k ∈ {1, · · · ,K − 1}, [zk, zk+1] = {zk, zk+1}.

Note that sincey, x ∈ F(DN) andF(DN) is gated,z1, · · · , zK ∈ F(DN).

Claim 1.2. z1, · · · , zK ∈ OF
2 (R1).

Note thatz1 = y ∈ OF
2 (R1). Suppose that for somek(≥ 1), zk ∈ OF

2 (R1). Then,

zk+1 ∈ [zk, x] ∩ F(DN) ⊆ [zk, p(R1)] ∩ F(DN).

12



By Lemma 2,zk+1 ∈ OF
2 (R1). (Proof of Claim 1.2. ends.)

Claim 1.3. zK < OF
2 (R̃1).

Note thatz1 = y < OF
2 (R̃1). Suppose that for somek(≥ 1), zk < OF

2 (R̃1). We prove
that zk+1 < OF

2 (R̃1) by contradiction. Suppose the contrary. That is, we assume that
zk+1 ∈ OF

2 (R̃1). By R1,

∃R̃2 ∈ D s.t.r1(R̃2) = zk ∧ r2(R̃2) = zk+1.

By SPof F,
F(R1, R̃2) = zk ∧ F(R̃1, R̃2) =k+1 .

Sincezk+1 ∈ [zk, p(R1)]\{zk} and single-peakedness ofR1, zk+1P1zk. Therefore,

F(R̃1, R̃2)P1F(R1, R̃2).

This contradicts the assumptionF is SP. (Proof of Claim 1.3. ends.)

Claim 1.3. contradicts the Claim 1.1. (Proof ofCase 1. ends. )

Case 2. #N ≥ 3.
Define f : D2 → X as follows:

f (R1,R2) = F(R1,R2,R2, · · · ,R2).

Obviously, f is SPand f (D2) = F(DN).

Claim 2.1.OF
−1(R1) = Of

2(R1) and OF
−1(R̃1) = Of

2(R̃1).

We prove only the former. Obviously,OF
−1(R1) ⊇ Of

2(R1). Let z ∈ OF
−1(R1) be

arbitrary. By the definition ofOF
−1(R1), we have a profile (R2, · · · ,Rn) ∈ DN\{1} such

thatF(R1,R2, · · · ,Rn) = z. Let Rz ∈ D be a preference such thatp(Rz) = z. By SPof
F,

F(R1,R2, · · · ,Rn) = F(R1,Rz,R
3, · · · ,Rn)

= F(R1,Rz,Rz,R
4, · · · ,Rn)

...

= F(R1,Rz,Rz, · · · ,Rz)

= f (R1,Rz).

Therefore,z ∈ Of
2(R1). (Proof of Claim 2.1. ends.)

We have

OF
−1(R1) = Of

2(R1) (∵ Claim 2.1.)

= Of
2(R̃1) (∵ Case 1.)

= OF
−1(R̃1). (∵ Claim2.1.)

�
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Lemma 4 says that under the assumption ofSP, PO is equivalent to the condition
that for any voteri, and any preference profile of other votersR−i , thei’s set of options
OF

i (R−i) is gated.

Lemma 4. Suppose that a social choice function F is SP. F is PO if and only if for all
i ∈ N, all R−i ∈ DN\{i}, OF

i (R−i) is gated.

Proof. (⇒) See Lemma3.1. in Nehring and Puppe [12].
(⇐) Let R, R̃ ∈ D. Suppose that

(p(R1), · · · , p(Rn)) = (p(R̃1), · · · , p(R̃n)).

Without loss of generality, suppose also thatR−1 = R̃−1. Define x := γ(p(R1))(=
γ(p(R̃1))). By the definition ofγ, and Lemma 3,

∀y ∈ OF
1 (R1)\{x}, x ∈ [y, p(R1)],

∀y ∈ OF
1 (R̃1)\{x}, x ∈ [y, p(R̃1)].

SinceR1 andR̃1 are single-peaked preferences,

τ(R1,OF
1 (R1)) = {x} ∧ τ(R̃1,OF

1 (R̃1)) = {x}.

SinceF is SP, F(R1; R−1) = x = F(R̃1; R̃−1). �

Lemma 5 says that if aSPsocial choice function has gated range, it satisfiesPO in
two voters case.

Lemma 5. Let N= {1,2}. Suppose that a social choice function F is SP and F(DN) is
gated. Then, F is PO.

Proof. Let i ∈ N and Ri ∈ D be arbitrary. We prove that the other voter’s option
set underRi is gated. Then, by Lemma 4 we have the conclusion. Without loss of
generality, assume thati = 2. By R3, we have a preferencẽR2 ∈ D ∩ P such that
p(R̃2) = p(R2). By Lemma 3,OF

1 (R̃2) = OF
1 (R2). Hence, we prove thatOF

1 (R̃2) is
gated.

Suppose the contrary. That is,

∃x0 ∈ X s.t. ∀x ∈ OF
1 (R̃2),∃y ∈ OF

1 (R̃2) s.t. x < [x0, y].

Claim. ∃R1, R̃1 ∈ D s.t. x0 = p(R1) = p(R̃1) and F(R1, R̃2) , F(R̃1, R̃2).
Let R1 ∈ D be a preference whose peak isx0. SinceF(R1, R̃2) ∈ OF

1 (R̃2), we have
y ∈ OF

1 (R̃2) such that
F(R1, R̃2) < [x0, y] = [p(R1), y].

By R2, we have a preferencẽR1 ∈ D satisfyingp(R̃1) = p(R1) andyP̃1F(R1, R̃2). By
SP, F(R̃1, R̃2) ∈ τ(R̃1,OF

1 (R̃2)). Hence,F(R1, R̃2) , F(R̃1, R̃2). (Proof of Claim ends.)
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Let z := F(R1, R̃2) and z̃ := F(R̃1, R̃2). Obviously,z ∈ OF
2 (R1) and z̃ ∈ OF

2 (R̃1).
Therefore, by Lemma 3z ∈ OF

2 (R̃1) andz̃ ∈ OF
2 (R1). By the definition of option sets,

we haveR̂2, ˆ̂R2 ∈ D such that

F(R̃1, R̂2) = z and F(R1, ˆ̂R2) = z̃.

SinceR̃2 is a strict preference, the following two cases are possible. First, ifzP̃2z̃,

F(R̃1, R̂2)P̃2F(R̃1, R̃2). This contradicts theSPof F. Second, if ˜zP̃2z, F(R1, ˆ̂R2)P̃2F(R1, R̃2).
This contradicts theSPof F. �

Lemma 6 says that if aSPsocial choice functionF has gated range, then for any
voter i, and a preferenceRi , the set of options for other voters is gated. This gated
option set result also appears in Nehring and Puppe [12] under the stronger assumption
of surjectivity while our assumption is gatedness. This difference is quite important not
only for the simple induction proof of Proposition 2, but also for the characterization
result for the model with indifference. Later, we compare the proof of Proposition 3.3.
in Nehring and Puppe [12] with that of our Proposition 2.

Lemma 6. Suppose that a social choice function F is SP and F(DN) is gated. Then,

∀i ∈ N, ∀Ri ∈ D, OF
−i(R

i) is gated.

Proof. Let i ∈ N,Ri ∈ D. Without loss of generality, suppose thati = 1. Define
f : D2→ X as follows:

f (R1,R2) = F(R1,R2,R2, · · · ,R2).

Obviously, f is SPand f (D2)(= F(DN)) is gated. It is easy to see thatOF
−1(R1) =

Of
2(R1). By Lemma 5,f is PO. By Lemma 4,Of

2(R1) is gated. Therefore,OF
−1(R1) is

gated. �

Now, we provide a proof of Proposition 2. The proof of Proposition 3.3. in Nehring
and Puppe [12], which states that anySPand onto social choice function satisfyPO ,
is done by the induction for the number of voters;

First, they prove two voters case. To prove the general case, letR1, R̃1 ∈ D satisfy
p(R1) = p(R̃1). DefineF1, F̃1 by F fixing voter 1’s preference asR1 andR̃1, respec-
tively. Then, they prove the general case by showingF1 = F̃1. BecauseF1 andF̃1 may
not surjective, to apply induction hypothesis they restrict the domain ofF1 andF̃1 to the
preferences onF1(DN\{1}) (= F̃1(DN\{1})). That is, defineD1 := {R |F1(DN\{1})| R ∈ D}.
Then, defineF′1 : DN\{1}

1 → F1(DN\{1}) andF̃′1 : DN\{1}
1 → F1(DN\{1}) by

F′1(R2 |F1(DN\{1}), · · · ,Rn |F1(DN\{1})) = F1(R2, · · · ,Rn),

F̃′1(R2 |F1(DN\{1}), · · · ,Rn |F1(DN\{1})) = F̃1(R2, · · · ,Rn).

In this operation, their assumption that admissible preferences are strict is needed to
guarantee the well-definedness ofF′1 and F̃′1. In our proof of Proposition 2, since we
relax the surjectivity, the reduction argument to the range ofF1 above is avoided.
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Proof of Proposition 2.(⇒) Let i ∈ N,R∗−i ∈ DN\{i}. Without loss of generality, sup-
pose thati = n. DefineF0 := F. For eachk = 1, · · · ,n− 2, defineFk : DN\{1,··· ,k} → X
as follows:

∀R−{1,··· ,k} ∈ DN\{1,··· ,k}, Fk(R−{1,··· ,k}) = Fk−1(R∗k; R−{1,··· ,k}).

Claim. F0, F1, · · · , Fn−2 areSPsocial choice functions whose ranges are gated.
Proof of Claim. F0 is SPandF0(DN) is gated. Suppose thatFk is SPandFk(DN\{1,··· ,k})
is gated. Obviously,Fk+1 is SP. By the definition ofFk+1,

Fk+1(DN\{1,··· ,k+1}) = OFk

−(k+1)(R
∗k+1).

By Lemma 6, the right side of the equation is gated. (Proof of Claim ends.)
By the Claim above,Fn−2 is SPandFn−2(D{1,··· ,n−2}) is gated. By Lemma 5,Fn−2

is PO. Thus,OFn−2
n (R∗n−1) is gated. By the definition ofF0, F1, · · · , Fn−2,

OFn−2
n (R∗n−1) = OFn−3

n (R∗n−2,R∗n−1)

= OFn−4
n (R∗n−3,R∗n−2,R∗n−1)

...

= OF1
n (R∗2,R∗3, · · · ,R∗n−1)

= OF0
n (R∗1,R∗2, · · · ,R∗n−1)

= OF
n (R∗−n)

Therefore,OF
n (R−n) is gated. By Lemma 4,F is PO.

(⇐) By Proposition 1,F is PM. Let x ∈ X. Let Rx ∈ D be a preference satisfying
p(Rx) = x. DefineR := (Rx, · · · ,Rx) and

γ(x) = F(R).

Let y ∈ F(DN) be arbitrary. We proveγ(x) ∈ [x, y] by contradiction. Suppose that
(x, γ(x), y) < T. Then, by the definition ofT,

∃H ∈ H s.t.{x, y} ⊆ H ∧ γ(x) < H.

Note thatF(R) = γ(x) < H. Let Ry ∈ D be a preference satisfyingp(Ry) = y. Define
R̃ := (Ry, · · · ,Ry). By Lemma 3,F(R̃) = y ∈ H. Obviously,N = {i ∈ N | p(R̃i) ∈ H} =
{i ∈ N | p(Ri) ∈ H}. Therefore, byPM of F, F(R) ∈ H, a contradiction. �
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