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Abstract

We extend a characterization theorem of the set of social choice functions
calledvoting by issueby Nehring and Puppe [12] in two directions: i) We charac-
terize the set of social choice functions calfgheralized voting by issuei§) The
characterization is done without the assumption that prefrences are strict.

Since Nehring and Puppe’s framework includes the models in Barisem-
nenschein and Zhou [5] (the set of alternatives is the power set of a set), 8arber
Gul and Stacchetti [2] (the set of alternatives is the product of lines) and Danilov
[7] (the set of alternatives has a tree structure), our result extends the character-
izations in these papers to the case fifence is admitted. While the proof in
Nehring and Puppe [12] involves the “reduction” to the subspace, our proof is
based on the simple induction argument.
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1 Introduction

The Gibbard-Satterthwaite theorem states that every strategy-proof and onto social
choice function is dictatorial when the set of preferences is unrestricted. In contrast
to this negative result, it is known that under the restriction of preferences, very rich
class of strategy-proof social choice functions emerges. One of the most important
restricted preference domains in the literature is the single-peaked domain. The break-
through of the literature on social choice with single-peaked preferences achieved by
Moulin [10]. He identified the set of strategy-proof and onto social choice functions
on the line as a generalization of the median voter rule. Since Moulin [10] provides the
elegant characterization, the literature on voting uncovered the class of strategy-proof
and onto social choice functions under the assumption of single-peaked preferences.
For the case the set of alternatives is finite, previous works by BarBennenschein

and Zhou [5] (the set of alternatives is the set of a power set), Barf@er and Stac-

chetti [2] (the set of alternatives is the product of lines), Schummer and Vohra [13] (the
set of alternatives has a tree structur@nd Danilov [7] (the set of alternatives has a
tree structure) identify the set of strategy-proof and onto social choice functions un-
der the assumption of single-peakedness. Remarkably, it turned out that strategy-proof
and onto social choice functions in these models, especially in first three models, have
common structure similar to that had been found by Moulin [10].

Nehring and Puppe [12] unify these models under the abstract framewddi of
chotomic) property spacandsingle-peaked preferencegve follow their wide-range
model. Before introducing their framework, let us look at the concept of single-
peakedness in the concrete models above. Although each concrete model has a dif-
ferent structure on the set of alternatives, a single-peaked preference in these models is
understood as a preference satisfying following two conditions :

i) There exists an ideal alternatiye
ii) If for distinct alternativesx andy, X is at least as “similar” to the ideal alter-
native p asy is to p, thenx s preferred toy.

The “similarity” is the key concept to describe the single-peakedness. It is defined
by depending on the structure endowed on the set of alternatives. When the set of
alternatives is the line (linearly ordered set), the linear order gives rise to a natural
criterion of similarlity: that is,x is at least as similar tp asyistopify < x < por

p < x <. In the same way, when the set of alternatives is the product of krisst

least as similar tg asy is to p if for each coordinatg, y; < x; < pj or pj < X; <;j.

Finally, when the set of alternatives is a traés at least as similar tp asyis to pif x

lies on the path fronp toy.

Nehring and Puppe provide a general structure on the set of alternatives called a
collection of propertiesand they call the spaces equipped with a collection of proper-
ties aproperty space Since a linearly ordered space, the product of linearly ordered
spaces and a tree can be represented by a property space, it is an extreme generalization
of the spaces dealt in the literature concerning the single-peaked preferences.

1For the precise definition of the tree, see section 4.



In Nehring and Puppe [12], a property is simply represented by a non-empty proper
subset of the set of alternativi¥s Any elements in the set are considered to have the
property, and elements in the complement are not. Roughly speaking, the structure of
properties is a collection of non-empty proper subset.dProperties are considered
to be dichotomic in their model (“left or right”, “high or low”, and so on.). A property
space gives rise to a criterion of the similarlity by the following way: given a collection
of properties x is at least as similar to the ideal alternatpesy is to p if y has a
property in common with the ideal alternatiye thenx also has the property. This
expression of the similarlity concept coincides with the natural one discribed above in
the concrete models under the apropriate property space representation of the space in
question.

On this abstract setting, Nehring and Puppe [12] provide a characterization of the
set of social choice functions calle@dting by issuesThey show that the set of voting
by issues coincides with the set of onto social choice functions satisfying strategy-
proofness. Since the models in BareBonnenschein and Zhou [5], BaraeGul
and Stacchetti [2] and Danilov [7] are special cases of their general model, the charac-
terization theorem of voting by issues can be seen as a comprehensive result of these
concrete models. It is worthwhile to notice that all of these previous results are ob-
tained under the assumption that each voter has a strict preference. But preferences
with indifference are quite natural in some concrete models. For example, consider the
society facing the problem choosing a location of a public facility (park, library, for
instance). Our abstract framework includes two types of this problem. First type is the
location problem on the plane, and second type is the location problem on the tree. In
these models, for instance, voters may have a preference which only cares about the
“distance” from the ideal location. In the plane, the distance from the ideal location
to a point is simply measured by the Eucledian metric. In the tree, the distance from
the ideal location to a point is measured by the number of vertices on the path between
them. While the previous results are obtained by excluding this type of preferénces,
in this paper, we extend the characterization theorem by Nehring and Puppe [12] to the
case that indference is admitted. Moreover, we characterize the set of social choice
functions which we caltyeneralized voting by issuel includes many not necessarily
onto social choice functions satisfying strategy-proofness.

A somewhat technical contribution is in proofs. While the proof of the character-
ization theorem in Nehring and Puppe [12] involves the “reduction” to the subspace,
our proof is based on the simple induction argument. Later, we compare the proof
technique emplyed in Nehring and Puppe [12] with that of ours.

This paper is organized as follows. In section 2, we introduce the Nehring and
Puppe’s abstract model. The definition of social choice functions to be characterized
and axioms are also given in this section. In section 3, we state our main result. Section
4 offers concrete models captured in our abstract framework. Section 5 concludes the

2Schummer and Vohra [13] also consider the location problem on a tree in which this type of preferences
are admitted. Since they restrict the attention to the case \alteayshave a preference which cares about
the distance from the idel location, their result can not be applied to some important cases. For example, the
case in which the set of admissible preferences includes all logically possible single-peaked preferences is
excluded in their model. Because of the domain conditions employed in Schummer and Vohra [13] and ours,
their results and that of ours are independent.



paper. The appendixi@rs a proof of Proposition 2.

2 General Model

2.1 Property space and single-peaked preferences

We follow the abstract model proposed in Nehring and Puppe [12]NLet{1,--- , n}

be the set of voters. We assume that 2h < +o0. Let X be the set of alternatives.

We assume that 2 #X < +o0. A special structure is endowed &h As mentioned in
Introduction, the structure of properties is a collection of non-empty proper subsets of
X. In addition to this, we assume that any two alternatives can be distinguished by a

property.

Definition. LetH < 2X. The pair(X, H) is a property space if{ satisfies the follow-
ing conditions H1, H2 and H3.

H1.0¢ H.

H2.YH € H,H® € H.

H3.Vx,ye X(x#y), IHe H st xeHAyeHC

Throughout the paper, except for in the concrete models in section 4, we fix the struc-
ture of properties{. The following is the notion of similarity derived fronX(#).

Definition. For all x,y and z in X, y is at least a@milar to x as z is to x if
YH eﬂ,[{x,z} CH=ye H].

The criterion of similarlity induced byX, H) is the ternary relation defined as
follows:
T ={(Xy,2) e Xx XX X|VYH e H,{x,Zl CH=yeH}

For the simplicity, we denot&x by T. 2 The set of alternatives at least as similaxto
asyis toxdenoted by X, y]. Thatis, [x,y] = {ae X | (x,a,y) e T}. *

3The ternary relatio satisfies the following four conditions.
T1 (Reflexivity).Vx,y € X, (X, X, Y) e TA(X,Y,y) € T.
T2 (Symmetry)Vx,y,ze X,(X,¥,2 €T = (zy,X) € T.
T3 (Transitivity). VX, ¥,z X, Y e X, (X, X, 2 e TAXY,2 e TAX, YY) eT = (XVy,2 €T.
T4 (R-antisymmetry)¥x.y,ze X, (X,¥,2) e TA(X,2y) e T =>y=2
In addition to above conditions, by T1 and T4, we have

YXyeX, (XY, X)eT =>y=x
By T2 and T4, we have L-antisymmetry
XY, ZEX, (XY, ETA(Y, %2 eT = x=Y.

4Let x,y € X. The following four statements are true.
(i) (xy} €%Vl
(iD). [x.y] =y, ¥
(iii). Yu,v e [x Y], [u,v] C[xY].
(iv). x#£y= 3Jze [xy]\{X} s.t. [x, 4 = {x, 2.



The set of complete and transitive binary relationsXois denoted byR. An ele-
ment ofR is called a preference. For a preferef;é> andl denote the strict part and
the indiferent part ofR. The set of anti-symmetric preferences is denotedbyor
eachR € R, each non-empty subs¥tC X, 7(R Y) = {x € Y | ¥y € Y, xRy. Thatis,
7(R Y) is the set of most desirable alternative®imith respect tR. For eactR € R,
if 7(R, X) is the singleton, the element of it is denotedp{R). For eachR € R, if
R hasry(R) andr(R, X\{r1(R)}) is the singleton, the element of it is denotedrbfR).
The set of admissible preferences is denotedbyD is a subset oR.

A profile of preferences or simply aprofile, is a list of voters’ preferences. Pro-
files are denoted by symbais R, R etc. The set of admissible profiles is denoted by
DN, For each profilR = (R, --- ,R"), eachi € N, the subprofile obtained by remov-
ing i’s preference is denoted th‘, thatis,R7 := (RL,--- ,R-L,R*. ... R"). Itis
convenient to write the profileRt, - ,R™L, R, R*L ... \R") as ®;R"). A mapping
from DN to X is called asocial choice function

Now, we introduce the notion of single-peakedness. It is characterized by two
features; i) it has an ideal alternative, and ii) forgly € X, if xis at least as similar to
the ideal alternative agis to the ideal alternative, thenis preferred toy.

Definition. A preference Re R is single-peaked with respect to T if there exists a
point, called the peak of R(R) € X such that

¥xy e X(x#Y),(p(R). x.y) € T = xPy.

The set of single-peaked preferences is denotef@dyWe assume that admissi-

ble preferences are single-peaked: thatdsg Rs °. We also assume the following
richness conditions R1, R2 and R3 on admissible preference domain.

R1.Vx,ye X(x#Y), [[xy] ={xy} = IARe D s.t. ri(R) = xArx(R) =y].

R2.V¥x,y,ze X, [z¢ [xY] = ARe D s.t. ri(R) = x A yPZ.

R3.¥xe X, ARe DNP s.t. ri(R) =x
R1 and R2 are conditions employed in Nehring and Puppe [12]. They also assume that
preferences are strict. Hence, the domain condition employed in Nehring and Puppe
[12] is R1, R2 andD C #. Obviously, our domaiD satisfying R1, R2 and R3 is not
necessarily included i?. Moreover,D N # does not satisfy the domain condition in
Nehring and Puppe [12] in general.

2.2 \Voting by issues

A generalized family of winning coalitions (GFW) on propertyH € H Wy is a
subset of ¥ satisfying

YW e Wi, YW SN, [WC W = W e Wi
If a GFW Wy satisfies the following condition, we simply call ifamily of winning

coalitions (FW):
Wy # 0 andd ¢ Wy.

50nly in subsection 4.1, we do not assume that admissible preferences are single-peaked preferences.



A structure of generalized family of winning coalitions (SGFW)on property space
(X, H) is a family of GFWs W = { Wy }hen Satisfying

VYH € H,YW C N,[WewH @vvcewac].

If a SGFW W = {Wy}uen consists ofFWs, ‘W is simply called astructure of
family of winning coalitions (SFW).
For eachSGFW ‘W = {Wylnen, fw : X" — 2X is defined as follows: for each
e X,
X € fy(d) [VH eH,{xeH={ieN|§¢ H}e’WH}].
Remark 1. V& € X" #fqy(¢) < 1.8

Definition. ASGFWW = {Wy}uesw iS consistent if
V¢ e X“, frw(af) #0.

Definition. Let W = {Whlhen be a consistenSGFW. The generalized voting by
issues ky is defined as follows:

VR € DV, Fy(R) € f(p(RY), - , p(R")).
If W = {Wyluen is a consistenSFW, Fqy is simply called a voting by issues.
Remark 2. LetW = {Whlhew be a consisterBGFW.
VH e H, VR € DV, [Fw(R) € H & (i € N| p(R) € H} € Wy].

2.3 Axioms

In this subsection, we introduce our axioms. [Eebe our generic notation of social
choice function. First axiom requires that one can not be beffdsyomisreporting
one’s preference.

Strategy-proofness (SP): for 8 = (R*,--- ,R") € DN, alli € N, and allR € D,
F(R) RF(R;R).

Remark 3. Let a social choice function F be SP. Then, F is unanimous (B"¥.
That is,
YR e DY, [p(RY) =+ = p(R") € F(D") = F(R) = p(R")|

Peak-onliness (PO): for alR,R € DN, (p(RY),--- , p(RY) = (p(RY), - - , p(R") im-
plies FR) = F(R) .

Peak-monotonicity (PM): for alR,R ¢ 12'\‘, alH € H, F(R) e Hand{i € N |
p(R) e HY c{ie N| p(R) € H} implies HR) € H.

6For a proof of remark 1, see Fact 3.1. in Nehring and Puppe [12].



3 Main Result

Proposition 1. A social choice function F is peak-monotonic if and only if F is a
generalized voting by issues.

Proof. Same as the proof of Proposition 3.1. in Nehring and Puppe [12]. |
Definition. A subset YC X is gated if

vxe X Fyy(X) € Y,Vy € Y, yv(X) € [xY].

The elementy(X) is called the gate of to x.” The gateyy(x) is simply denoted
by y(x) when there is no confusion. A gated ¥elhas an important property such that

VReRs, 7(RY) = {y(p(R)}.

An interval [x,y] is an example of a gated set in the models described in subsection
4.2, 4.3 and 4.48 Note that the universal sétis also an example of gated set.

Proposition 2. Suppose that a social choice function F is strategy-proof. Then, F has
gated range if and only if F is peak-only.

A proof of Proposition 2 is given in Appendix. The following is our characteriza-
tion of the generalized voting by issues.

Theorem. A social choice function F which has gated range is strategy-proof if and
only if F is a generalized voting by issues.

Proof. Nehring and Puppe [12] show thBM is equivalent to the combination &P
andPO°. Therefore, we have done by Proposition 1 and 2. |

As noted in subsection 2.1) does not have subdomain satisfying Nehring and
Puppe’s domain condition in general. Therefore, the proof of Theorem does not de-
pends on the Nehring and Puppe’s characterization theorem. The following is a result
also obtained in Nehring and Puppe [12] under the assumption that preferences are
strict. As is mentioned in Introduction, since their general framework includes the
models in Barbex, Sonnenschein and Zhou [5], BardeGul and Stacchetti [2] and
Danilov [7], Corollary 1 extends the characterizations in these papers to the case in-
difference is admitted. As noted before, since the universak setan example of
gated set, onto social choice functions satisfy the range conditions in Proposition 2 and
Theorem.

Corollary 1. An onto social choice function F is strategy-proof if and only if F is a
voting by issues.

Note that since our result doe®t exclude the cas® < P, our result implies
Theorem 2 in Nehring and Puppe [12].

If Y is gated, for alk,y € Y, [x,y] C Y.
8The spaces described in these models are exampiaedifin spacesSee Nehring and Puppe [12].
9See Proposition 3.2. in [12]. Their proof of Proposition 3.2 is valid for the casféneince is admitted.



4  Applications
4.1 The Gibbard-Satterthwaite theorem

In this subsection, we give a generalized result of Corollary 1 in Nehring and Puppe
[12]. Throughout this subsection, we assume thas a subset oR that may include
non-single-peaked preferences. A social choice fundtiotON — X is strategy-proof
if

R=(R, - ,R) e DV, Vie N,VR € D,F(R) RF(R;R™.

A social choice functiork : DN — X is dictatorial if
Jige N s.t. YVR= (R, --- ,R") € DV, E(R) € 7(R°, X).

Corollary 2. Suppose tha#X > 3 and (X, H) is a property space in which only the
universal set and all singletons are gated. Suppose alsaZihiatludes a rich single-
peaked preference domaid. If a social choice functiofr : DN — X is SP and onto,
thenF is dictatorial.

Proof. DefineF := F |yn. By Corollary 1,F is a voting by issues. Hencg,= Fo for
some consisterBFW W. We can prove thafy, is dictatorial following the elegant
proof for Corollary 1 in Nehring and Puppe [12]. Ligte N be the dictator o .

Next, we prove thaip is a dictator ofF. Suppose the contrary. Assume that there
existsR = (R%,--- ,R") € DN such thatE (R) ¢ 7(R°, X). Let Ro ¢ D with p(RO) €
T(R‘0 X). If F(Ro;R70) = p(Rv), ig can mampulateF Hence F(Ro; R70) % p(Ro),
LetR € D be a preference whose pealkigRo; R '°) LetR™ be the preference profile
other thang in which each voter’s preference® Then, bySPof F, F(R°; R™0) =
F(Ro; R7) = F(Ro; R"). This contradicts the fact thatis the dictator of. |

Barber and Peleg [4] prove that, in a metric space, if for anye X(x # y), there
exists a continuous preference which ranifirst andy second, then a strategy-proof
and onto social choice function is dictatorial. Thus, Corollary 2 is an alternative proof
of their general result via voting by issues.

4.2 Choosing a subset

Let A be a non-empty finite set. Elementsfére denoted by symbots 3, y etc. Bar-

ber, Sonnenschein and Zhou [5] consider the social choice problem in which society
chooses a subset f The set of alternativeX is the power set of. That is,X := 2-.
Elements ofX are denoted by symbolsy, zetc.

Definition. For eacha € A, H, := {x € X | @ € x}. That s, H, is the collection of
subsets of A including. We defing+ = {H, | @ € A} U{HS | @ € A}.

It is easy to show that{, H) is a property space. In this space, for eacR y € X,
X is at least as similar tp asy is to p if and only if

VeeAlleepandacy=oaecxl and{o¢panda¢y=a¢x|



Barbeg, Sonnenschein and Zhou [5] show that the se8®&nd onto social choice
functions or®N (or the set of strict preferences which have additive representation) is
the set of voting by issué% Note that in this model, an§GFW are consistent.

4.3 Location problem on the product of lines
4.3.1 Special case: Location problem on the line
Let X :={1,2,---,m}. Suppose thanis greater than or equal to 2.

Definition. For each xe X\{1}, H* := {y € X | y > x}. For each xe X\{m},
Hy :={y e X |y < x}. We defingH = {H* | x e X\{1}} U {Hy | x € X\{m}}.

Itis easy to verify thatX, H) is a property space. In this space, for epch y € X,
X is at least as similar tp asy is to p if and only if

y<x<por psx<y.

Moulin [10] and Ching [6] show that the set 8Pand onto social choice functions is
the set of voting by issues.

4.3.2 General case

Let mbe a natural number. Definéd = {1,2,--- ,m}. For eachj € M, m; be a natural
number greater than or equal to 2. Rgtbe the set of natural numbeiks 2, - - -, m;}.
DefineX := Iljem Xj. For eachj € M, let (Xj, H;) be the property space defined in the
previous subsection. We defitté = {H;, x ITj4;, X | jo € M, Hj, € Hjg}.

Itis easy to verify thatX, H) is a property space. In this space, for each y € X,
X is at least as similar tp asy is to p if and only if

VieM, y; <X <pjorpp<X<y;

Barbeg, Gul and Stacchetti [2] show that the seS#social choice functions oM
which have gated range is the set of generalized voting by issues. Note that in this
model,SGFW is consistenif and only if

VH,H e H,H C H = Wy € Wy.

4.4 Location problem on the tree

Let E be a subset of2with S € E = #S = 2. (X,E) is called a (simplejyraph An
element ofE is called an edge. A sequenpe(}ﬁ=1 in X is awalk from x; to Xk in
(X,E)if foreachk e {1,2,--- ,K =1}, {Xc, X1} € E. A sequenc:{zxk}l’jz1 in X is apath

10Barbed, Sonnenschein and Zhou [5] describe the preferenc#sda separable preferences. In this
model, separability and single-peakedness are equivalent when preferences are strict. These two concepts do
not coincide in the model with inffierence. Ju [9] characterize the set of social choice functions satisfying
SPandnull-independencen separable weak preference domain. Although both our model and Ju’s model
are extension of Barbay Sonnenschein and Zhou’s model to the model withfiedince, the domains of
preferences are filerent.



from xq to xk in (X, E) if it is a walk satisfying #i, -+ , %1} = k—1. A walk{xk}fzl
is closed if X = xk. A closed path is called @ycle

We assume thal{( E) is atreg that is, following two statements hold.

(i) (Connectedne3sFor all x,y € X, there exists a WaI[o(k}E:1 such that¢; = x
andxg =Y.

(i) (Nocyclg There exists no closed path.

Note that for eaclx,y € X, there exists an unique path froxto y in this space.
Note also that for each edge= E, the subgraphX, E\{€}) has exactly two connected
components. That is, for each edge {x,y} € E, one of the connected components
in (X, E\{e}) includesx and the other component includgsThe former is denoted by
H: and the latter is denoted m We defineH = {HS | e= {x,y} € E}.

Itis easy to verify thatX, H) is a property space. In this space, forepck y € X,

X is at least as similar tp asy is to p if and only if xlies on the path fronptoy.

Danilov [7] characterizes the set 8P and PO social choice functions as the set
of social choice functions generated by constant mappings and dictatorial mappings.
We also characterize the same set by the set of generalized voting by issues without the
assumption that admissible preferences are strict. Note that in this nB@EWV is
consistentf and only if

VH,H e H,H C H = Wy c Wy.

5 Conclusion

In this paper, we extend a characterization theorem of voting by issues by Nehring and
Puppe [12] to the case intirence is admitted. Since their framework includes the
models in Barbex, Sonnenschein and Zhou [5], BardeGul and Stacchetti [2] and
Danilov [7], our result extends the characterizations in these papers to the case indif-
ference is admitted. Moreover, we characterized generalized voting by issues which
includes not necessarily onto social choice functions.

Although our theorem is a generalization of many important previous results, it is
important to notice that our result does not cover Theorem 3 in Bariiasé and
Neme [3]. Theorem 3 says thatXfis the product of lines and = Rs N P, thenany
strategy-proof social choice function can be written as a voting by issues on its range.
More precisely, ifF : DN — X is strategy-proof, then there exists a consis&FV
W on the subspacd=(DN), Hr(pv)) such that

F(R) = fw(r(R,F(DY),--- . 7(R, F(D™)).*?

Whether this result holds in Nehring and Puppe’s general setting is an open question.

YFor a precise description, see Danilov [7].
12Since eactR is a strict preference(R', F(DV)) is a singleton. Here, we abuse the notation to represent
the element of (R, F(DN)). Note thatfy, is a mapping fromE(DN)N to F(DN).

10



Appendix : Proof of Proposition 2.

In the Appendix, we provide a proof of Proposition 2. The proof follows several lem-
mas. Lemma 1 says that for aryy € X, we have a sequent{:a(}l'f:l in [x,y] such that

the first point isx, and the end point ig, and each point is “adjacent” to the next point;
that is, there is no point between them.

Lemmal. Let xy € X(x # y). There exists a finite sequeritzga}l*f:1 on[x,y] satisfying
the following two conditions.

()zz=%xAzZ=y A VKe{l - KNLK} z€ [z Y]\ (Za).

(") Vke{l,--- ,K-1}, [Zka Zk+l] = {Z, Z1}.

Proof. Definez; := x. As noted before,
Iz € [z, y]\(z} st. [z, 2] = {21, ).

Suppose that, satisfiesz # y. Then,

Az € [26 Y\ st [, Zaa] = {2 2 )

For some stefX, we havezg = y. Otherwise,

[z.¥] 2 [22,¥] 2 [z.Y] 2.
But this contradicts the fact{, y] is finite. g

For the description of lemmas below, we define the notion of option set originally
introduced by Barbér, 13

Definition. Let F be a social choice function. For eacteiN, and R e D, R™ ¢
PN
Of(R) = {xe X| IR e DM s.t. HR;R™) = X,

Of(R™) ={xeX|IR e Dst. HR;R™) = x}.

Lemma 2 and 3 below are slightly generalized version of Fact B.1. and Lemma
B.2. in Nehring and Puppe [12]. Proofs are based on the same technique given by
Nehring and Puppe [12].

Lemma 2. Let N= {1,2}. Suppose that a social choice function F is SP adr) is
gated. Letie N and Re D. Let je N\{i}.

¥x e OF(R), Yy e [x p(R)] n F(D"), y € Of (R).

Proof. Without loss of generality, suppose that 1 andj = 2. Pickx € Og(Rl) and
y € [x, p(RY)] N F(DN) arbitrarily. If x = y, we have done. Suppose that y.

Case1[xy] = {xy}

13For example, see Barkiefl].
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By contradiction. Suppose thai O (R'). By R1,
AR e Ds.t.ri(Ry) =y A ra(Ryx) = X

By SPand Remark 3F(R!, Ry) = xandF (R, Ryx) =Y. Sincey € [x, p(RY)]\{x} and
single-peakedness &8, yP'x. Therefore,

F(Ryx, Ryx) PlF(Rla RyX)
This contradicts the assumptiénis SP.

Case 2 [x,¥] # {x Y}

By Lemma 1, we have a sequen@glk ; on [x,y] (C [x, p(RY)]) satisfying condi-
tion (i) and (i) in Lemma 1. Since,y € F(DN) andF(DN) is gated, k,y] € F(DN).
Therefore,{z}_, is a sequence on[p(RY)] N F(DN). Sincezy = x € O5(RY), by
Case 1we havez, € O5(RY). By induction, we havg = z € O5 (R'). O

Lemma 3. Suppose that a social choice function F is SP af@®¥) is gated. Then,
vie N,VR,R € D, [p(R) = p(R) = O%(R) = OF(R)|.

Proof. Without loss of generality, suppose that 1. Definex’ := p(RY)(= p(R')) and
X = y(X).

Case 1N ={1,2}
By contradiction. Without loss of generality, suppose that

Jy e O5(RY) s.t.y ¢ O5 (RY).

Claim 1.1 x € O5(RY). )
SinceO5 (R!) # 0, we can take an alternatives O} (R'). Because € F(DV) and
F(DN) is gated, 5
y(X) € [z X] = [z p(RY)].
Therefore, we have € [z p(RY)] N F(DN). By Lemma 2x € O5(RY). (Proof of Claim
1.1. ends.)

By Claim 1.1.,y # x. By Lemma 1, we have a sequeﬂze}szl on [y, X] satisfying
the following two conditions.

()zz=y A z=xAVke (L KNLK} € [z, Y\(Zc1)

(") Vke{l,--- ,K-1}, [Zka Zk+l] = {Z, Z1}.
Note that since, x € F(DN) andF(DN) is gatedzy, - - - ,zx € F(DV).

Claml1l.2z, -,z € OS(R]')
Note thatz; = y € O} (R"). Suppose that for soné> 1), z. € O (RY). Then,

Ze1 € [2 X N F(OY) € [ pRY)] N F(DM).

12



By Lemma 2z, € O5(RY). (Proof of Claim 1.2. ends.)

Claim 1.3 z ¢ O5(RY). )
Note thatz; = y ¢ O} (R"). Suppose that for somé> 1), z ¢ O5(R'). We prove
that z,1 ¢~O§ (RY) by contradiction. Suppose the contrary. That is, we assume that
Zu1 € O5(RY). By R1,
IR € Ds.t.ri(R) =z A 12(R?) = z1.

By SPof F,
FIRLR) =z A F(RLRP) =1

Sincez1 € [z P(RY]\{z} and single-peakednessR¥, z.1P'z. Therefore,
F(R', R)P'F (R, RY).

This contradicts the assumptiénis SP. (Proof of Claim 1.3. ends.)

Claim 1.3. contradicts the Claim 1.1. (Proof@&se 1 ends. )
Case 2 #N > 3.

Definef : ©? — X as follows:

f(RLRY) = FRLRA RS, -, RY).

Obviously, f is SPand f(D?) = F(DN).
Claim 2.1.0F, (RY) = O}(RY) and OF,(R) = OL(RY).

We prove only the former. ObviouslpF (RY) 2 OL(RY). Letz € OF,(R!) be
arbitrary. By the definition oD, (R"), we have a profileR?, --- ,R") € DM such

thatF(RL, R%,--- ,R") = z LetR, € D be a preference such tha{R,) = z By SPof
Fl

FRLR, - .R) =FRLR.R,--- R
= F(Rl, Rz, Rz, RA, 9Rn)

= F(Rl, RZ) RZs ) RZ)
= f(RLRy).

Thereforez e Oé(Rl). (Proof of Claim 2.1. ends.)

We have
O, (R) =O}(RY) (- Claim 2.1.)
= O}(RY (- Case 1)
= OF,(RY. (- Claim2.1.)
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Lemma 4 says that under the assumptio$BfPO is equivalent to the condition
that for any voter, and any preference profile of other vot&s, thei’s set of options
OF(R™) is gated.

Lemma 4. Suppose that a social choice function F is SP. F is PO if and only if for all
ieN,allR™" e DN OF(R™) is gated.

Proof. (=) See Lemmaa3.1. in Nehring and Puppe [12].
(<) LetR,R € D. Suppose that

(P(RY, -, p(RY) = (p(RY, -, p(R)):

Without loss of generality, suppose also tiat" = R-1. Definex = y(p(RY))(=
y(p(RY)). By the definition ofy, and Lemma 3,

vy € OF (RY\{x}, x € [y, p(RY)],
vy € Of (RY\{x}, x € [y, p(RY)].

SinceR! andR! are single-peaked preferences,
(R, OE(RY) = (4 A (R OF(RY) = (x).
SinceF is SP, F(R:; R™Y) = x = F(RL R™D). O

Lemma 5 says that if 8Psocial choice function has gated range, it satigfi€sn
two voters case.

Lemma 5. Let N = {1, 2}. Suppose that a social choice function F is SP af®¥) is
gated. Then, F is PO.

Proof. Leti € N andR € D be arbitrary. We prove that the other voter’s option
set underR is gated. Then, by Lemma 4 we have the conclusion. Without loss of
generality, assume that= 2. By R3, we have a preferené® € D n # such that
p(R?) = p(R?). By Lemma 3,0 (R?) = OF(R?). Hence, we prove thadf (R?) is
gated.

Suppose the contrary. That is,

Ixp € X s.t. Vx e OF (R?), 3y € OF (R?) s.t. x ¢ [%o,Y].

Claim. 3R, Rt € D s.t. xo = p(RY) = p(R!) and F(R,R?) # F(R!, R?).
LetR' € D be a preference whose peakss SinceF (R', R?) € OF (), we have
y € Of (R?) such that
F(R'R) ¢ [x0.Y] = [P(RY). Y]
By R2, we have a preferené® ¢ D satisfyingp(R*) = p(R') andyP*F(R!, R?). By
SP, F(RY, R?) e (R, OF (R?)). Hence F(RY, R?) # F(RY, R?). (Proof of Claim ends.)
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Let z := F(R, R?) andZ := F(R!,R?). Obviously,z € O5(R!) andZ e O} (RY).
Therefore, by Lemma 3 € O} (R") andZ e O5(R). By the definition of option sets,

we haveR2, R2 € D such that
FIRLR) =z and F(RL, R}) = 2

SinceR? is a strict preference, the following two cases are possible. Firgb2,
F(RL, R?)P2F(RL, R?). This contradicts th8Pof F. Second, iZP?z, F(RL, R2)P2F (RL, R?).
This contradicts th&Pof F. ]

Lemma 6 says that if 8P social choice functiorr has gated range, then for any
voteri, and a preferencB, the set of options for other voters is gated. This gated
option set result also appears in Nehring and Puppe [12] under the stronger assumption
of surjectivity while our assumption is gatedness. Thifediénce is quite important not
only for the simple induction proof of Proposition 2, but also for the characterization
result for the model with indierence. Later, we compare the proof of Proposition 3.3.
in Nehring and Puppe [12] with that of our Proposition 2.

Lemma 6. Suppose that a social choice function F is SP af@®¥) is gated. Then,
VieN, YR € O, OF,(R) is gated

Proof. Leti € N,R e D. Without loss of generality, suppose that 1. Define
f : ©? — X as follows:

f(RLR) =FRLRA R, -+ ,RY).

Obviously, f is SPand f(D?)(= F(DV)) is gated. It is easy to see thaf, (R') =
Oé(R;). By Lemma 5,f is PO. By Lemma 4,O£(R1) is gated. Thereforef (R) is
gated. O

Now, we provide a proof of Proposition 2. The proof of Proposition 3.3. in Nehring
and Puppe [12], which states that &l and onto social choice function satishD ,
is done by the induction for the number of voters;

First, they prove two voters case. To prove the general casel,|lBt € D satisfy
p(RY) = p(RY). DefineFy, F1 by F fixing voter 1's preference a&! andR!, respec-
tively. Then, they prove the general case by shovwing F.. Becausé=; andF; may
not surjective, to apply induction hypothesis they restrict the domafi ahdF; to the
preferences off (DN (= Fy (D). That is, defineD; := {R [g, (vl R € D).
Then, defing=; : D' — Fy(ONY) andF; : DY — Fy (D) by

F:/L(RZ |FI(DN\(1)), ey, Rn h:l(DN\(l))) = F]_(RZ, ey, W),
F1(R leyomimy, -+ » R [eyonimy) = F1(RE, -+, RY).

In this operation, their assumption that admissible preferences are strict is needed to
guarantee the well-definednesskgfandF;]. In our proof of Proposition 2, since we
relax the surjectivity, the reduction argument to the rangeé;cadbove is avoided.
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Proof of Proposition 2.(=) Leti € N,R*" € DN\l Without loss of generality, sup-
pose that = n. DefineFq := F. Foreactkk = 1,--- ,n -2, defineF, : DNVLK 5 X
as follows:

YR K g LK (R K = g (R RTEK),

Claim. Fo, Fy1, ---, Fnh_» areSPsocial choice functions whose ranges are gated.
Proof of Claim Fq is SPandFo(DV) is gated. Suppose thBf is SPandF (DN\1 )
is gated. Obviouslykk.1 is SP. By the definition ofFy,4,

Fe (DNt = Offkﬂ)(R*kﬂ)-

By Lemma 6, the right side of the equation is gated. (Proof of Claim ends.)
By the Claim aboveF,_, is SPandF, (D' "2 is gated. By Lemma F,_»
is PO. Thus,Of2(R"™1) is gated. By the definition dfo, Fq, -+, Fno,

Of*(R™) = OF*(R™2R™)
— Orl:n,4(R*n—3’ R*r‘l—Z’ R*r‘l—l)

= O Y(R2,RS,... ,R™Y
— OEO(R*]', R*Z, . R*n—l)
= O (R

Therefore OF (R™) is gated. By Lemma 4; is PO.
(<) By Proposition 1,F is PM. Let x € X. Let Ry € D be a preference satisfying
p(Ry) = x. DefineR := (Rx,--- ,Rx) and

¥(x) = F(R).

Lety € F(DN) be arbitrary. We prove(x) € [x,y] by contradiction. Suppose that
(%, ¥(X),y) ¢ T. Then, by the definition of,

AH e Hst{xy}CH A y(X) ¢ H.
Note thatF(R) = y(x) ¢ H. LetR, € D be a preference satisfyingRy) = y. Define
R:= (R, --,R). By Lemma3F(R) =y e H. Obviously,N = {i e N| p(R) € H} =
{i e N| p(R) € H}. Therefore, byPM of F, F(R) € H, a contradiction. O
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