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Abstract

We consider the queuing pattern at some possible bottleneck locations in cities
and applicable conditions of time-variant congestion charge for continuous land use.
The ADL model shows road user�s departure time choice and charging rule which re-
allocate each road user�s departure time. And, this model has been extended for discrete
networks. However, the settings of these analysis included some contradictions. In
addition, discrete settings have a di¢ culty which is to extend into land use optimization.
To resolve these problems, we reconstruct two-tandem bottleneck model and show
the equilibrium and the welfare changes. Besides, we introduce continuous land into
the ADL model. We show that applicable conditions depend on maximum tra¢ c
volume/capacity and capacity of other point.
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1 Introduction

We consider the queuing pattern at some possible bottleneck locations in cities and the
applicable conditions of time-variant congestion charge for continuous land use. Arnott, de
Palma and Lindsey (1988, 1990a) shows the road user�s departure time choice and charging
rule which re-allocate each road user�s departure time to maximize the road user�s sur-
plus (hereafter ADL model). The ADL model depicts the situation that individuals use a
capacity-�xed bottleneck and tra¢ c over-�ow in peak period. However, the original ADL
model does not consider spacial features. Because the objective of transport is to travel, it is
necessary to consider the relationship between congestion and spacial features. Practically,
where to charge is a matter of great importance in a congested city.
Several studies are attempted to introduce spacial feature in the ADL model using net-

works. ADL (1990b, 1993b) consider route choices and optimal tolls in two route networks.
Kuwahara (1990) solves two-tandem bottleneck problem. However, Kuwahara (1990) as-
sumes distribution of desire departure time as given. A distribution of desire departure time
must be induced by optimization of each commuter. ADL (1990b) consider route choices and
optimal tolls in two routes, and ADL (1993b) consider queuing patterns and optimal tolls in
�Y-shape�network. However, the setting of ADL (1993b) is substantially same with Kuwa-
hara (1990). ADL (1993b) analyze a welfare between numbers of commuters and capacity
sizes. And ADL (1993b) also examine the change of total surplus with upstream bottleneck
capacity expansion. They concluded that upstream bottleneck capacity expansion may lead
to a decrease on total surplus. ADL (1993b) named this phenomenon as �A dynamic traf-
�c equilibrium paradox�. However, The sorting criterion in ADL (1993b) is inappropriate.
The criterion in ADL (1993b) has a contradiction among equilibrium costs of two commuter
groups, bottleneck capacities and numbers of commuters. For example, �equilibrium cost of
upstream commuters�> �that of downstream commuters�contradicts �upstream capacity�
> �downstream capacity�. Daniel, Gisches and Rapoport (2009) points out the �Paradox�
again and constructs a experiment model However, Daniel, Gisches and Rapoport (2009)
are based on ADL (1993b). Therefore, we re-formulate two-tandem bottleneck problem and
show that the �Paradox�never occur.
On the other hand, in an urban district, due to a scarcity of land, we should consider the

e¢ cient allocation of land. However, in the literature of urban economics, it is general to
assume continuity on land. Therefore, to consider the relationship between congestion and
land use, we will show applicable conditions and charging rule based on the ADL model for
continuous land. However, in this paper, we assume the distribution of residents and land
use patterns are �xed.

2 Model

We begin with characterizing spacial features. We consider the monocentric city which has
congested roads. The center of the city is rc, and the boundary is ff .(rc < rf ). The city has
�xed population N 2 R. Suppose that the people who live in this city are homogeneous, and
commute for the CBD (Central Business District). In the CBD, there is no congestion. Land
is allocated for housing and transport, and the allocation between housing and transport is
�xed. Each distance r 2 R (from the CBD), n(r) is located(n(r) > 0). Therefore, we can
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get

N(r) =

Z rf

r

n(x)dx: (1)

N(r) monotonically increases when r decreases. The total amount of land and the land
for transport at any point are denoted L(r), LT (r) (LT (r) 2 R; LT (r) is continuous on r
and 0 < LT (r) < L(r)). Also we assume that the capacity of road is equivalent to LT (r).
In this paper, to search the charging points, we adopt the ratio of tra¢ c volume to ca-

pacity of road ( N(r)LT (r)
) as an indicator of the degree of congestion. At the locations where

the ratio of tra¢ c volume to capacity of road is over 1 ( N(r)LT (r)
> 1), congestions may occur

because the tra¢ c volumes over the road capacities. Therefore, these locations are possible
bottleneck locations. For N(r)

LT (r)
, since [rc; rf ] is compact and continuous, there exist maxi-

mum of N(r)
LT (r)

on [rc; rf ] (if some points take same value of
N(r)
LT (r)

, we take the nearest one

to the CBD). Then, we will call this r as r1m 2 [rc; rf ]. Furthermore, for [rc; r1m), it does not
satisfy compactness, we can�t say the existence of maximum. However if there exist, we call
this r as r2m 2 [rc; r1m) and so (the i� th largest

N(r)
LT (r)

is named rim).
Next, we characterize chronic features, and these are almost the same as in the original

ADL model. We pick any rim from [rc; rf ], and consider the commuter trips N(rim) from
each locations far from rim to the CBD (commuters have the same �xed arrival time t�). If
tra¢ c volumes reach the road capacity at rim(which is LT (r

i
m)), a queue is formed. Each

commuter must choose how long he will waste time in the queue or in the CBD. The cost of
waiting time in the CBD is called schedule delay cost. On the other hand, the cost he must
bear in queue is called travel time cost. Hence, we can present trip cost as

C(t) = �(travel time) + �(time early) + 
(time late); (2)

where �, �, 
 are each shadow cost and t is departure time for each commuter. For
simplicity, we assume that travel time T (rim) consist of waiting time in a queue (i.e., travel
time by free-�ow is 0). Therefore, we can denote each trip cost as t��t�T (t) or t+T (t)�t�.
The no-toll equilibrium is the Nash equilibrium which is attained by each commuter

who decides his departure time under the decisions of others. For each time, the bottleneck
can handle LT (r) tra¢ c volume, hence, we can get te� t0 = N(r)=LT (r). If the commuters
depart at t0, they will pay the trip price p(t0) = C(t0) = �(t� � t0) and if the commuters
depart at te, they will pay the trip price p(te) = C(te) = 
(te � t�). In equilibrium, all
commuters must have equal trip price, hence, from p(t0) = p(tn) = p(te), we can get

t0 = t
� � 


� + 


N(r)

LT (r)
; tn = t

� � �


�(� + 
)

N(r)

LT (r)
; te = t

� +
�

� + 


N(r)

LT (r)
: (3)

And we have trip price

p = C = t� � �


� + 


N(r)

LT (r)
: (4)
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Now, we can lead the toll for clearing the queue and maximizing the social surplus :

�(t; r) =

(
�

�+


N(r)
LT (r)

� �(t� � t) if t 2 [t0; t�]
�

�+


N(r)
LT (r)

� 
(t� t�) if t 2 [t�; te]
: (5)

This toll is corresponding to the waiting cost in the queue at each time. By this toll, we
can maximize the social surplus without changing the interval of peak period. Therefore,
we can recover the queuing time in monetary term which is dead weight loss. Next, we will
consider the no-toll equilibrium in multiple bottlenecks under this framework.

3 The no-toll equilibrium in multiple bottlenecks

At �rst, for simpli�cation, we examine the two bottleneck cases in discrete locations. We
assume the two bottlenecks LAT , L

B
T (LAT is near the CBD) and the commuter groups nA,

nB which locate LAT , L
B
T each other (nA + nB = N). And we assume that each bottleneck

satis�es N
LAT

> 1; N
LBT

> 1. The number of departing commuters at each time t 2 [tiq; tiq0 ] are
de�ned xi(t) (i = A;B). Then, the queue length at LBT is

DB
x (t) =

( R t
tBq
xB(u)du� LBT (t� tBq ) if

R t
tBq
xB(u)du > L

B
T (t� tBq )

0 if otherwise
: (6)

Therefore, the commuters who start at time t encounter the waiting time TBx (t) =
DB
x (t)

LBT
.

On the other hand, the queue length at LAT is

DA
x (t) =

8>>>><>>>>:

R t̂
tAq
xA(u)du+ L

B
T (t̂� tAq )� LAT (t̂� tAq )

if
R t̂
tAq
xA(u)du+ L

B
T (t̂� tAq ) > LAT (t̂� tAq )

0 if otherwise

; (7)

but t̂ = t + TBx (t). Therefore, the commuters who start at time t, located at L
B
T and

who start at time t̂, located at LAT encounter the waiting time T
A
x (t) =

DA
x (t)

LAT
.

Next, we summarize four cases of queuing pattern of two bottlenecks;8>><>>:
DA
x (t) = 0 ^ DB

x (t) = 0 � � � � � � (i)
DA
x (t) > 0 ^ DB

x (t) = 0 � � � � � � (ii)
DA
x (t) = 0 ^ DB

x (t) > 0 � � � � � � (iii)
DA
x (t) > 0 ^ DB

x (t) > 0 � � � � � � (iv)

; (8)
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)

(i)

�
_DA
x (t) = 0
_DB
x (t) = 0

)
�

_TAx (t) = _TAx (t̂) = 0
_TBx (t) = 0

(ii)

�
_DA
x (t) = xA(t) + xB(t)� LAT

_DB
x (t) = 0

)
(

_TAx (t) = _TAx (t̂) =
xA(t)+xB(t)�LAT

LAT
_TBx (t) = 0

(iii)

�
_DA
x (t) = 0
_DB
x (t) = xB(t)� LBT

)
(

_TAx (t) = _TAx (t̂) = 0

_TBx (t) =
xB(t)�LBT

LBT

(iv)

8><>:
_DA
x (t̂) = xA(t̂) + L

B
T � LAT

_DA
x (t) =

�
1 + _TBx (t)

� �
xA(t̂) + L

B
T � LAT

�
_DB
x (t) = xB(t)� LBT

)

8>>><>>>:
_TAx (t̂) =

xA(t̂)+L
B
T�L

A
T

LAT

_TAx (t) =
(1+ _TBx (t))(xA(t̂)+L

B
T�L

A
T )

LBT

_TBx (t) =
xB(t)�LBT

LBT

: (9)

The di¤erences between _TAx (t) and _TAx (t̂) in the case (iv) derives from the timing dif-
ferences of joining the queue DA

x (t) of commuters locating at L
A
T and L

B
T . Commuters who

locate at LAT (i.e., nA) join the D
A
x (t) at the same time as they depart, on the other hand,

who locate at LBT (i.e., nB) join the D
A
x (t) after passing through L

B
T . Hence, commuters of

nA face the queue length DA
x (t̂) and commuters of nB face the queue length D

A
x (t). These

two equations will be required to �nd the value of xi(t) which satisfy the �rst order condition
of nB .
Next, we set the commuters� problem. The nA�s problem is cost minimization given

�,�,
 > 0, t�, TAx (t) =
DA
x (t)

LAT
, xA(t) > 0, i.e.,

min
t
CA(t) =

�
�TAx (t) + �(t

� � t� TAx (t)) if t � etA
�TAx (t) + 
(t+ T

A
x (t)� t�) if t > etA , (10)

If DB
x (t) > 0, T

A
x (�) is not t then t̂. Similarly, the nB�s problem is also cost minimization

given �, �, 
 > 0, t�, TBx (t) =
DB
x (t)

LBT
, xB(t) > 0, i.e.,

min
t
CB(t) =

�
�(TAx (t) + T

B
x (t)) + �(t

� � t� TAx (t)� TBx (t)) if t � etB
�(TAx (t) + T

B
x (t)) + 
(t+ T

A
x (t) + T

B
x (t)� t�) if t > etB . (11)
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From these problems, we can get next relations (�rst order conditions : hereafter FOC),

_TAx (t) =

(
�

��� if t � etA
� 

�+
 if t > etA (12)

and

_TBx (t) =

8<:
�

���� _TAx (t)

1+ _TAx (t)
if t � etB

�



�+
+
_TAx (t)

1+ _TAx (t)
if t > etB . (13)

Then, we will �nd the value of xi(t) which satisfy the FOC (case (i) is trivial, hence we
omit this case).

(ii) xA(t) =

(
�

���L
A
T � xB(t) + LAT if t � etA

� 

�+
L

A
T � xB(t) + LAT if t > etA ; (14a)

xB(t) =

(
�

���L
A
T � xA(t) + LAT if t � etB

� 

�+
L

A
T � xA(t) + LAT if t > etB : (14b)

(iii) @xA(t) which satisfy the FOC; (15a)

xB(t) =

(
�

���L
B
T + L

B
T if t � etB

� 

�+
L

B
T + L

B
T if t > etB : (15b)

(iv) xA(t̂) =

(
�

���L
A
T + L

A
T � LBT if t̂ � etA

� 

�+
L

A
T + L

A
T � LBT if t̂ > etA ; (16a)

xB(t) = L
B
T for all t: (16b)

In these cases, from assumptions and FOC, the possible patterns are only pattern (ii) and
pattern (iii)� (iv)� (iii) (proof in appendix 1). Pattern (ii) is equivalent to original ADL
model at LAT for N persons. Hence, we will show the equilibrium of pattern (iii)�(iv)�(iii).
The equilibrium of pattern (iii)�(iv)�(iii) is constituted by each (LAT and LBT ) queuing time
interval and switching times from (iii) to (iv) and (iv) to (iii). To induce the equilibrium,
we will show the conditions,
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�t = tAq � TBx (�t); (17a)

t = tAq0 � TBx (t); (17b)

~tA = t
� � TAx (~tA); (17c)

~tB = t
� � TAx (~tA)� TBx (~tB) = ~tA � TBx (~tB); (17d)Z tA

q0

tAq

xA(u)du =
�
~tA � tAq

�� �

�� �L
A
T � LBT + LAT

�
+
�
tAq0 � ~tA

��
� 


�+ 

LAT � LBT + LAT

�
= nA;

(17e)Z tB
q0

tBq

xB(u)du =
�
�t� tBq

�� �

�� �L
B
T + L

B
T

�
+
�
t� �t

�
LBT +

�
tBq0 � t

��
� 


�+ 

LBT + L

B
T

�
= nB ;

(17f)�
~tA � tAq

� �

�� �L
A
T =

�
tAq0 � ~tA

� 


�+ 

LAT at LAT ; (17g)�

�t� tBq
� �

�� �L
B
T =

�
tBq0 � t

� 


�+ 

LBT at LBT ; (17h)

tAq � �t = ~tA � ~tB = tAq0 � t: (17i)

where, each �t and t denotes the departure time of nB when nB can reach LAT at t
A
q and

tAq0 . From these conditions, we can get next solutions1 ,

1We can prove that these solutions lead the equilibrium of nB from equality between CB(t) =
�

�+


nB
LB
T

if t 2 [tBq ; t] and CB(t) =
�

�+


nA
LA
T
�LB

T

� �(tAq � t) if t 2 [t; t].
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tAq = t
� � nA

LAT � LBT



� + 

; (18)

tAq0 = t
� +

nA
LAT � LBT

�

� + 

; (19)

~tA = t
� � nA

LAT � LBT
�


�(� + 
)
; (20)

tBq = t
� � nB

LBT




� + 

; (21)

tBq0 = t
� +

nB
LBT

�

� + 

; (22)

~tB = t
� � nB

LBT

�


�(� + 
)
; (23)

�t = t� � nA
LAT � LBT


(�� �)
�(� + 
)

� nB
LBT

�


�(� + 
)
; (24)

t = t� +
nA

LAT � LBT
�(�+ 
)

�(� + 
)
� nB
LBT

�


�(� + 
)
: (25)

This result implies that pattern (iii) � (iv) � (iii) , nA
LAT�LBT

< nB
LBT

, N
LAT

< nB
LBT

otherwise pattern (ii) will realize. Namely, if the possible bottleneck location near the CBD
has lower tra¢ c volume over capacity (hereafter tra¢ c volume/capacity) than far the CBD,
both possible bottleneck locations become bottlenecks. On the other hand, if the possible
bottleneck location near the CBD has high tra¢ c volume/capacity than far the CBD, only
this possible bottleneck location become a bottleneck. Therefore, to search the bottlenecks
(i.e., charging points) according to the value of tra¢ c volume/capacity (from large to small)
ensures no existence of bottleneck far from such a point (or in the interval from i-th largest
bottleneck to i+ 1-th largest bottleneck).

Proposition 1 In the monocentric city, we suppose that there are two possible bottleneck
locations in which the tra¢ c volume excess the capacity. Then, whether both two possi-
ble bottleneck locations become bottlenecks or only one possible bottleneck location becomes
bottleneck depend on the relative sizes of tra¢ c volume/capacity at two locations. If the pos-
sible bottleneck location nearer the CBD has less tra¢ c volume/capacity, then both possible
bottleneck locations become bottlenecks. On the other hand, if the possible bottleneck loca-
tion nearer the CBD has much tra¢ c volume/capacity, only this possible bottleneck location
becomes a bottleneck.

3.1 Equilibrium user�s costs and capacity expansion

We examine the equilibrium commuters� travel costs, total cost of each commuter group
and the changes of total costs according to capacity expansion in upstream bottleneck in
pattern (iii)� (iv)� (iii). Arnott et. al. (1993b) pointed out so-called �A dynamic tra¢ c
equilibrium paradox�. The paradox is that capacity expansion in upstream bottleneck may
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cause increase in total cost. In this subsection, we show that the paradox of capacity
expansion does not arise in any cases. First, we calculate the equilibrium commuters�travel
costs and total cost of each user group. Next, we show that capacity expansion decreases
the sum of total cost of each user group in all cases.
From (10), (18) and (19), the equilibrium user�s travel costs of group A (downstream) is

CA =
nA

LAT � LBT
�


� + 

; (26)

and total cost of group A is

TCA =
n2A

LAT � LBT
�


� + 

: (27)

Therefore, the change of total cost of group A according to capacity expansion in up-
stream bottleneck is

@TCA
@LBT

=

�
nA

LAT � LBT

�2
�


� + 

: (28)

On the other hand, from (11), (21) and (22), the equilibrium user�s travel costs of group
B (upstream) is

CB =
nA
LBT

�


� + 

; (29)

and total cost of group B is

TCB =
n2B
LBT

�


� + 

: (30)

Therefore, the change of total cost of group B according to capacity expansion in up-
stream bottleneck is

@TCB
@LBT

= �
�
nB
LBT

�2
�


� + 

: (31)

From these results and nA
LAT�LBT

< nB
LBT
, we can conclude that for all cases, capacity ex-

pansion in upstream bottleneck must decrease the sum of total costs of each group.

Proposition 2 In two-tandem (Y-shaped) bottleneck case, for any capacity expansion in
upstream bottleneck must decrease the sum of total costs of each group.

4 Charging rule for monocentric cities

4.1 Take the maximum of N(r)
LT (r)

and the minimum capacity at the
CBD

First, we will consider the case that maximum N(r)
LT (r)

is taken at rc (which is edge of the
CBD). In this case, by charging at edge of the CBD, we can attain maximization of social
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surplus and clear the queue. The reason is that charging which depends on LT (rc) makes
departure rate per time from [rf ; rc] equal LT (rc) and makes no bottleneck other than
LT (rc). In this case, the toll is

�(t; rc) =

(
�

�+


N(rc)
LT (rc)

� �(t� � t) if t 2 [t0(rc); t�]
�

�+


N(rc)
LT (rc)

� 
(t� t�) if t 2 [t�(rc); te]
: (32)

This toll is the same as in the toll of original ADL model. Hence, this charging brings
maximum surplus comparing any chargings at other points. This reason is clear because the
bottleneck is unique (from the proposition 1).

Proposition 3 At the closed monocentric city, the point which attains the maximum tra¢ c
volume/capacity and minimum capacity on r locates at rc, the maximum social welfare
is attained by imposing ADL charging at rc. By imposing this charging, congestion will
disappear.

In many practical cases of Road Pricing, the charging points are often located on bridges
or tunnels near the CBD because of technical feasibility. However, we could see that these
charging points are selected properly in terms of e¢ ciency also. Because such facilities have
almost maximum N(r)

LT (r)
in many cities.

4.2 Take the maximum of N(r)
LT (r)

and the minimum capacity at other
than the CBD

Next, we consider the case that maximum N(r)
LT (r)

is taken at other than rc (i.e., r1m 2 (rc; rf ]).
And we suppose that second largest N(r)

LT (r)
is attained at the edge of the CBD (i.e., r2m =

rc). For the road users located in r 2 (r1m; rf ] (N(r
1
m) =

R rf
r1m
n(x)dx), we will impose

the ADL charging at r1m to make their departure rate LT (r1m). The rush hour interval is
[t0(r1m); te(r

1
m)] which is maximum for all r.

For r 2 [r2m; r1m), the capacities are strictly larger than LT (r1m) (proof in appendix A)
and from the assumption, the maximum of N(r)

LT (r)
in this section is attained at rc. Therefore

we need to consider that the charging rule about N(rc)�N(r1m) on LT (rc)�LT (r1m). The
rush interval [t0(rc); te(rc)] is the proper subset of [t0(r1m); te(r

1
m)]. Hence, we can consider

that the available capacity at rc is (LT (rc)�LT (r1m)) for all time in [t0(rc); te(rc)] (proof in
appendix B). Therefore we can simply apply the ADL charging at two points for each road
user group respectively. By this charging, the departure rate of road users locating in (r1m; rf ]
will be the same of �remaining� road capacity at rc, i.e., LT (rc) � LT (r1m). Regardless of
the more than two bottlenecks case, if the rim corresponds with rc for any i, the same rule
can be applied.

Proposition 4 At the closed monocentric city, the point which attains the maximum tra¢ c
volume/capacity on r locates at other than rc, and the point which attains the second largest
tra¢ c volume/capacity and minimum capacity on r locates at rc. Then, the social welfare
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is maximized by imposing the ADL chargings at r1m and rc for each section divided by r1m.
By imposing these chargings, congestion will disappear.

4.3 Discussions

The case is that r1m > rc, and r
i
m close to rc asymptotically, however never correspond with

rc. In this case, we can de�ne the charging theoretically, however it is not realistic to charge
at in�nite points. In this rule, �nite times of charging occur only the case that for any rim
corresponds with rc. If not so, we must use arbitrary stopping rule in practice.
Next discussion is that the point which takes second largest N(r2m)

LT (r2m)
closes to largest

N(r1m)
LT (r1m)

asymptotically. In this case, we can not �nd the N(r2m)
LT (r2m)

, hence we can not de�ne

the charging rules at the N(r2m)
LT (r2m)

either.
For more proceeding with analysis, we need to relax the assumption of �xed location.

In this analysis, we have �xed the distribution of road users on r. That is certain that
congestion charging is short run problem, on the other hand, location optimization is long
run problem. However location choice of individuals will be strongly a¤ected by transport
cost, hence, we need to analyze the relation between ADL charging and location choice.
Also, to �nd the optimal road capacity at each point is remaining problem.

4.4 Summary

In this paper, we consider the relation among commuters�location, road capacity distribution
and occurrence of bottlenecks. And also, we examine the relation between road capacity
expansion and welfare, and the applicability of the ADL charging for monocentric cities with
continuous land. We examine the occurrences condition of bottlenecks under several possible
bottleneck locations. The realization patterns of bottlenecks depend on relative sizes (i.e.,
tra¢ c volume/capacity) of bottlenecks. As we see in proposition 1, if the possible bottleneck
location near the CBD has a less tra¢ c volume/capacity, both possible bottleneck locations
become bottlenecks. On the other hand, if the possible bottleneck location near the CBD has
a much tra¢ c volume/capacity, only this possible bottleneck location becomes a bottleneck.
Also we examine that, for any cases, the �Paradox� never occur ; therefore, the capacity
expansion of upstream bottleneck always lead the total surplus increase. Under monocentric
city, we show that the applicability depends on the location of maximum N(r)

LT (r)
. If maximum

N(r)
LT (r)

is attained at rc (which is edge of the CBD), the maximum social welfare is attained
by imposing the ADL charging at rc. By imposing this charging, congestion will disappear.
On the other hand, If maximum N(r)

LT (r)
is taken at other than rc (i.e., r1m 2 (rc; rf ]), we

need to check the applicability of charging case by case. Each section except [r1m; rf ] do not
satisfy the compactness, hence, the applicability is limited in such a case; �if there exists
the n-th largest N(r)

LT (r)
�. However, if there exist, we can de�ne a charging rule from r1m to

rnm. And if the n-th largest
N(r)
LT (r)

is taken at rc, we can de�ne the rule which requires �nite

charging points. Each commuter pays the ADL toll only one time which depend on N(r)
LT (r)

at the nearest charging point from his departed location. By this charging, social welfare is
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maximized.
By this analysis, we show that even relatively simple scheme could attain optimum.

Therefore, complicate and expensive schemes (such as GPS charging for trip distance) are
not necessarily required to attain social optimum on monocentric cities.

Appendix 1

We show the realization patterns of bottlenecks in two possible bottleneck locations case.
From the assumptions and FOC, some patterns will never occur. Therefore, we prove the
possible patterns.
The case (i) do not satisfy FOC, hence it never occur. Also the patterns which include

the case (i) never exist.
Next, we consider patterns including the case (ii). In the case (ii), DB

x (t) = 0 and
~tB = ~tA. Hence, DB

x (t) > 0 never occurs after the case (ii). Therefore, pattern (ii) � (iii)
and pattern (ii)� (iv) do not happen.
Then, we examine the patterns including the case (iii) First, there are not t which satisfy

the FOC of nA, hence the case (iii) never occurs solely. Second, it is impossible to move from
the case (iii) to the case (ii) before tBq0 (t � tBq0 =) DB

x (t) > 0) and it violates equilibrium
condition to move from the case (ii) to the case (iii), therefore pattern (iii) � (ii) and
pattern (iii)� (iv)� (iii)� (ii) do not occur. Finally these are impossible to end with the
case (iv) and to move from the case (iv) to the case (ii) because DB

x (t) > 0 which arise
from the time interval [tBq ; t

A
q ] is kept in a period of the case (iv),.Hence, pattern (iii)� (iv),

pattern (iii)� (iv)� (ii), pattern (iii)� (iv)� (ii)� (iii), pattern (iii)� (iv)� (ii)� (iv)
and pattern (iii)� (iv)� (iii)� (iv) are not exist.
Finally, the cases starting from the case (iv) do not exist because these contradict

DB
x (t) > 0.
Therefore the possible patterns are only pattern (ii) and pattern (iii)� (iv)� (iii).

Appendix 2

We prove that the set of departure times of ri+1m becomes the proper subset of the set of de-

parture times of rim i.e., [t0(r
i+1
m ); te(r

i+1
m )] � [t0(rim); te(rim)]. First,

N(rim)
LT (rim)

=

N(rim)

LT (r
i
m)

(LT (r
i+1
m )�LT (rim))

LT (r
i+1
m )�LT (rim)

=

LT (r
i+1
m )

LT (r
i
m)

N(rim)�N(r
i
m)

LT (r
i+1
m )�LT (rim)

. Then, N(rim)
LT (rim)

>
N(ri+1m )

LT (r
i+1
m )

) LT (r
i+1
m )

LT (rim)
N(rim) > N(ri+1m ), we can

get N(rim)
LT (rim)

>
N(ri+1m )�N(rim)
LT (r

i+1
m )�LT (rim)

. All commuters have the same t�; �; �; 
, we can get
N(rim)
LT (rim)

>
N(ri+1m )

LT (r
i+1
m )

) [t0(r
i
m); te(r

i
m)] � [t0(ri+1m ); te(r

i+1
m )].
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