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Abstract
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1 Introduction

One of the most serious problem in designing a resource allocation rule is the ffade-o
betweerstrategy-proofnegsach agent cannot be betté¥ loy misreporting one’s pref-
erence) andPareto gficiencyallocations selected by a rule are Pardiicient: that is,

there is no another feasible allocation in which every agent is not wéirsad at least

one agent is betterf). Particularly in the context of the pure exchange economies, it
is well-known that rules which satisfy bosftrategy-proofnesandPareto ¢ficiencyad-

mit the unsymmetrical treatment of agents, typically the existence of the dictator (See
Hurwicz (1972), Zhou (1991), Serizawa (2002) and Serizawa and Weymark (2003)).

However, very diferent result is known in an environment wigingle-peaked
preferences In his celebrated paper, Sprumont (1991) shows that the uniform rule
is the only rule which satisfiesnonymity(rules do not depend on names of agents)
(or envy-freenegno agent prefers others’ consumption to one’s own consumption) ),
strategy-proofnesandPareto gficiencyin the economy with onlpnecommodity and
single-peaked preferencefRoughly speaking, the uniform rule is the rule that allo-
cates the same consumption for each individual, but if the sum of individuals’ peaks
is greater (smaller) than the total amount of the good supplied, then individuals whose
peaks are small(large) enough receive their own peaks and individuals whose peaks are
large(small) receive the equal division of the residual. That is, individuals whose peaks
are small enough have the priority if there is excess demand, and individuals whose
peaks are large enough have the priority if there is excess supply under the uniform
rule. In Sprumont’s environment, thetrategy-proofnesand thePareto ¢ficiencydo
not imply the unsymmetrical treatment of agents unlike the pure exchange economy
(See Sprumont (1991) and Ching (1994)).

Single-peaked preferences and the uniform rule can naturally be extended to
commodity environments. The uniform rule in the environment with more than one
commodities, which is referred to #se generalized uniform rulallocates commodi-
ties commodity by commodity on the basis of the uniform rule in the one commodity
environment. It may be a natural question : Does the generalized uniform rule satisfy
strategy-proofness, Paretgieiencyand many equity conditions like one-dimensional
uniform rule? The answer for tretrategy-proofnesand equity conditions is positive,
but, unfortunately enough, the answer for fPareto gficiencyis negative; the gen-
eralized uniform rule isot Pareto éficient. Moreover, Amadys (2002) pointed out
that strategy-proofnesand Pareto gficiencytogether result in the dictatorship under
the single-peaked preference environment with more than one commaodities when the
number of individual is two. Even under the single-peaked preference environment,
if we suppose that the economy has several commodities, then the conflict between
strategy-proofnesand Pareto gficiencyarises. We study the design of a rule in this
environment. Particularly, we consider rules which satisfies strategy-proofness, some
equity conditions and a notion of second befiiceency instead of Paretdieiency.

We give a full characterization t¢ifie generalized uniform rulhen there are only two
agents.

Regardless of the number of commodities, the (generalized) uniform rule satisfies
a solidarity condition calledame-sidednesghich is a necessary condition fBareto
gfficiency The same-sidedneds equivalent to théPareto gficiencyonly if there is



only one commaodity, and this is the key to Sprumont’s successful characterization.
However the condition in the environment with more than one commodities is strictly
weaker tharPareto gficiency We discuss the condition in section 4 in detail.

Amorbds (2002) characterized the generalized uniform rulstipng symmetiagents
who have the same preference recieve the same allotmeen\pHfreenegsstrategy-
proofnessand same-sidednesa 2 personm goods economy. Morimoto, Ching and
Serizawa (2008) characterized the ruledyynmetrgagents who have the same prefer-
ence recieve indlierent allotments for themgtrategy-proofnessespect for unanim-
ity(if the sum of peaks coincides with the social endowment, then each agent recieves
one’s own peak) andon-bossinedsin n personm goods economyRespect for una-
nimity is a necessary fasame-sidednessnd it is very weaker thasame-sidedness
in general. However it is equivelent same-sidednesaderstrategy-proofnesand
non-bossinessHence Morimoto, Ching and Serizawa’s (2008) characterization is in
line with Amorbs’ characterization witsame-sidednss

Although the generalized uniform rule is not Parefibcéent, it is reasonable to ex-
pect that the generalized uniform rule has sotffieiency properties relative to other
strategy-proof rules. Indeed, Sasaki (2003) shows that the generalized uniform rule
satisfies a notion of second be#figency. More precisely, he showed that there ex-
ists no strategy-proof rule which Pareto dominates the generalized uniform rule for all
preference profiles even when the number of commodities is more than one but the
number of individuals is two. His result indicates that the generalized uniform rule is
still a prominent presence with respect ti@ency among the strategy-proof rules in
two persorm commodities environment.

In this note, we introduce a second betogency condition which is weaker than
Sasaki’s, and characterize the generalized uniform rule with the condition in two person
economies. This note proceeds as follows: in section 2 we introduce our model and
axioms formally. Section 3 describes our main result. In section 4 we compare our
result with literatures’. Section 5 concludes.

2 Setup

2.1 Notations

Let N = {1, 2} be the set of individuals. Le¥l = {1,--- , m} represent the set of com-
modities. All commodities are perfectly divisible. The bunflle= (Qj,---,Qn) €

RT, denotes the endowment of commodities in this economi = {x = (x},x?) €

R™M? | xt + x> = Q} denotes the set of feasible allocations. We do not allow free
disposal.R denotes the set of complete, transitive and continuous binary relations on

HT:l[O’ Qj]-3

1if a change of an agent’s preference does not change the agent's allotment, then it does not change other
agents’ allotment

2N denotes the set of natural numbeRsdenotes the set of real numbeks, andR, . denote the set of
non-negative and positive real numbers, respectively.

3For eacR € R, P(R) andI (R) denote the asymmetric part@fand the symmetric part &%, respectively.



Definition. R € R is single-peaked if there exisgR) € nf;;l[o,gzj] such that for all
X X € [TL4[0, Qj](x # X),

[VieM:x <x <p(RV PR <X <X|=xPR X.

LetS = (R e R | Ris single-peaked SN denotes the set of preference profiles. For
each preference profiRe = (R, R?) ¢ SN, R = RZandR2 = R,

7(R,Y) denotes the best consumptions¥rc ngil[o, Q;] with respect toR € S.
Thatis,7(R,Y) = {x € Y| Yy € Y : xRy} In our setting, each individual has a continu-
ous preference on compact consumptionﬁ@_tl[o, Qj]. Hence, ifY C ]’1211[0, Qjlis
closed, then(R,Y) is not empty. v

A function fromSN to B is calleda rule. The symbolB' denotes the range of the
ith component function of when we fix the others’ preferenée That is, given a rule
f, forallRe S, B = f1(S x {R}) andB% = f2({R} x S). We referB'k asthe option
set of individual i with respect t6f, R).

The purpose of this note is to characterize the following rule which is knowimeas
generalized uniform rule

Definition. The generalized uniform rule : SN — B is the rule defined by the
following; forallR = (R, R?) e sN, all j e M, alli € N,

min{pj(Ri.),/lj(R)} if pj(RY) + pj(R?) = Q;,
max{p,-(R'),pj(R)} if pj(Rl) + p,(Rz) < Qj,
where 2;(R) = Q; — min{p;(RY), p;(R?)} and x;(R) = Q; — maxp;(RY), p;(R?)}.

UiR) {

2.2 Axioms

The following axiom requires that one cannot be betfébg misreporting one’s pref-
erence.

Strategy-proofness (SPFor allR = (R',R?) € sN and allR € S, f1(R) RH (R R?)
and F2(R)R2F2(RLR).

I'sp denotes the set of strategy-proof rules. The following axiom reflects the idea
that everyone should not be worsi than under the equal division rule.

Egalitarian rationality (ER)*: For allR = (R}, R?) e SN and alli € N, f/(R) R 2.

The following axiom requires that the rules should be “simple” in the sense a rule
depends only on the each individual's peak of preference.

4This axiom is sometimes referred totae equal division lower bound



Peak-onliness: For allR = (RL,R?),R = (RLR?) e sN, if p(RY) = p(R!) and
p(R2) = p(R?), thenf(R) = f(R).

The next axiom requires that for each individual, his allotment can not change
without changing his peak under the condition other individuals’ preferences are un-
changed. Note that this axiom is weaker than peak-onliness in general. But in our 2
person setup, peak-onliness and weak peak-onliness are equivalent.

Weak peak-onliness (WPFor allR = (RL, R?),VRL R? € S, if p(R!) = p(RY), then
fY(R) = f1(RL, R?) and if p(R?) = p(R?), thenf2(R) = 4R, R?).

To introduce our second bedtieiency conditions, we need to prepare the next re-
lation onIsp.

Definition. A binary relation dont I'sp x I'spis defined as follows; for alf,g € I'sp
f domg o YR=(RLR) esV,VieN: f(R)R ¢(R).5

Our second bestfigciency conditions are following two. Note that the latter is log-
ically stronger than the former.

Weak second besffieiency among strategy-proof rules (WSESP) I'sp and for all
g e I'sp, if gdom f, thenf domg.

Strong second besffigiency among strategy-proof rules (SSESP I'sp and for all
gelsp if gdomf,thenf =g.

Sasaki (2003) first introduce8ISESRand showed that the generalized uniform rule
satisfiedSSESP

3 Main Result

We now state our main result. The proof is given in Appendix A.

Theorem 1. The generalized uniform rule is the only rule which satisfies the egali-
tarian rationality, the weak peak-onliness and the weak second fjies¢ecy among
strategy-proof rules

The following examples show that Theorem 1 is a tight characterization. That is,
the lack of one of three axioms leads to multiplicity of rules.

5Note that dom is reflexive and transitive. Hence it is a preordefpn But it is not an order off'sp in
general.



Example 1. An example of rules which satisfy both ER and WP, but do not satisfy WS-
ESP:Let E be the equal division rule defined as follows; forRlE SN, E(R) = (£, $).
ObviouslyE satisfieEERandWPbut E does not satisfWWSESHecausdJ domE and

not E domU.

Example 2. An example of a rules which satisfy both WP and WSESP, but do not sat-
isfy ER:Let D® be the priority rule in which individual 1 has the priority defined as
follows; for allR = (R, R?) € SN, DO(R) = (p(RY),Q - p(RY)). SinceDW is SP

and Paretofiicient, it must baVSESPIt is also clear thab™® satisfiesSWP. However,
clearly D does not satisfiER

Example 3. An example of a rule which satisfies both ER and WSESP, but does not
satisfies WPLet f be the rule defined as follows. For &I= (R, R?) € SN,

{(R) = (@,0) if QR'Z and OR?Z,
(2,9 otherwise.

Obviously f satisfiesSPandER

First we show that) does not dominaté. By Lemma 3, there exist®!, R2 € S
such thatp(RY) = p(R®) = (Qu, - ,Qm1,0) andQ P(RYE and OP(R?)%. Then
f(RL, R?) = (Q,0) by Lemma 1. Sinc& (R, R?) = (£, £), U does not dominaté.

By Theorem 3.1 in Anno(2008), there exidtse I'sp such thatf, is WSESRand
fo domf. Sincef satisfiesERand dom is transitivefy satisfiesER (R, R)R'Q P(RY)$
and f2(R, R?)R? 0 P(R?)2 because, dom f. SinceU (R, R?) = (£, £), fo # U. This
means thatfy does not satisffWWP, because iffy satisfiesWP, then by Theorem 1
fo = U, a contradiction.

By Example 1,2 and 3, we have shown tlaioms in Theorem 1 are mutually
independent
4 Discussion

As was mentioned in the introduction, the generalized uniform rule is not P&feto e
cient, but satisfies logically weaker conditions, nansaglyne-sidednessdrespect for
unanimity

Pareto gficiency: For allg e I', if gdom f, thenf domg. ’
Same-sidedness For all R € SN, and allj € M, (1) if Yy pj(R') Q;, then

>
fi(R) < pi(R) for all i € N, and (2) if Zien Pj(R) < Qj, thenpj(R) < f|(R) for
allieN.8

6This kind of rules are first introduced by Hiroo Sasaki.

"Note that this is equivalent to the following statement. ForRalk (R, R?) e SN, there is nox =
(<, x2) € Bsuch that (1R f'(R) for all i € N, and (2)xioPio fio(R) for someig € N.

8]t is well-known thatsame-sidedness equivalent tdPareto gficiencyif m= 1. See Sprumont (1991).



Respect for unanimity For allR = (R, R%) € SN, if 3y P(R) = Q, thenf(R) =
(P(RY), p(R?)).

Note thatrespect for unanimitys much weaker thasame-sidednesa general,
but in our setup they are equivalent un@&?(See Lemma 1 in Morimoto, Ching and
Serizawa (2008)). Amds (2002) pointed out the following.

Proposition 1 (Amorbs (2002)). Suppose théte I'sp\ {DW, D@}, Thenf does not
satisfyPareto gficiency

According to Proposition 1, if we hope to design a non-dictatorial rule which satis-
fies SR, then we must give upareto gficiency Amoros (2002) and Morimoto, Ching
and Serizawa (2008) chosame-sidedness respect for unanimitynstead ofPareto
efficiency Note that Proposition 2 is logically implied by Proposition 3.

Proposition 2 (Amords (2002)). The generalized uniform rule is the only rule which
satisfiesSP, same-sidednessdstrong symmetry?

Proposition 3 (Morimoto, Ching and Serizawa (2008)). The generalized uniform rule
is the only rule which satisfieSP, respect for unanimitandsymmetry© 11

Note that equity conditionER, symmetrgndstrong symmetrimply non-dictatorship.
As was pointed out in Proposition 1, if we hope to desi@Pand non-dictatorial rule,
then we must give upareto gficiency That is, we must admit some profiles which are
not corresponded to a Paretifigent allocation. Hence, they can be interpreted as the
“cost” of SPand non-dictatorship.

Itis hard for us to decide profiles which is corresponded to non Paftiteat allo-
cation. Same-sidednessmdRespect for unanimitgtre restrictive in the sense that they
restrict profiles in which non Paretdieiency arise to profiles in which;.y p(R) # Q.

But this is less attractive because there is no theoretical reason we treat profiles in which
Sien P(R) = Q as exceptions.

Itis easy to check that if we have a rule which does not satésfgect for unanimity
(Same-sidednegsthen we can construct a moréieient rule. Formally, if a rulef
does not satisfiegespect for unanimitythen we have at least one preference profile
R’ = (R, R?) e sN such thatYj.y p(R) = Q but f(R") # (p(RY), p(R?). And
obviously we can constract moréieient rulef’ by definingf’(R’) = (p(R?), p(R?))
and f’(R) = f(R) for all R # R’. Amorbds’s justification forSame-sidedness to
exclude this type of constructidi.Note that in the example abo@&P is not inherited

9Strong symmetryFor allR = (RL, R?) € SN, if Rt = R, thenf(R) = f2(R).

10symmetry For allR = (RY, R?) € SN, if R = R?, thenf1(R)I(RY) f2(R).

Morimoto, Ching and Serizawa (2008) extremly extend Abso(2002) characterization result. They
showed that the generalized uniform rule is the only rule satisfgiigespect for unanimitgymmetnyand
non-bossiness in n person m commodity econddon-bossineseequires that a change of an individual's
preference under the condition his allotment is unchanged does not change the allotment foNwhers.
bossinesss trivially satisfied in our setup with only two individuals and the feasibility condition. Hence,
Proposition 3is a special case of Morimoto, Ching and Serizawa’s result.

125ame-sidedness referred to a€ondition Ein Amoros (2002).



by f' in generalwhenf is SP.

ImposingRespect for unanimitgSame-sidednepsvith SP excludes theSPrules
which can be dominated by another (possibly &BY rule. However, in this notay/S-
ESPexcludes only th&Prules which can be dominated by anot&&trule. This gives
us an intuition thaSPandrespect for unanimityogether imply our second bedfie
ciency condition. Theorem 2 (1) certifies this intuition to be true. In fextpect for
unanimitywith SPimplies SSESPNote that Example 3 also showed tNdSESRioes
not imply respect for unanimity'® The proof of Theorem 2 is given in Appendix B.

Theorem 2.

(1) If f satisfiegespect for unanimitandSP, thenf satisfiesSSSESP
(2) If f satisfiesWPandsymmetrythenf satisfiesstrong symmetry
(3) If f satisfiesWP, symmetrnandSP, thenf satisfiesER

(1) in Theorem 2 shows a fiicient condition forSSESRand note that the gener-
alized uniform rule is a rule which satisfies tlespect for unanimitgandSP. That is,
this result strengthens Sasaki’s (2003).

Note also that Theorem 1 and 2 togeffiémply Proposition 2 and Proposition 3.

5 Concluding Remarks

In this note, we have shown that the generalized uniform rule is the only rule that
satisfieEER, WPandWSESHN two personm good economy with single-peaked pref-
erences. Furthermore, we also showed that axioms we employed are independent.

In the main theorem, we employ®8dSESPbut not justSP. In Appendix C, exam-
ples of rules which satisf$P, ERandWP other than the generalized uniform rule and
the equal division rule are provided. It shows that there are uncountably many rules
which satisfySP, ERand WP. This shows thaWSESPnot justSP, is crucial in our
characterization.

Whether our results can be extended to models with more than 2 individuals is still
open. We hope that some of our techniques help to solve the problem.

Appendix A : Proof of Theorem 1

Note that the assumption that there are only 2 individuals does not matter in Lemma
1,2,3and 4.

Lemmal.Let f be arule.

ferspe VResSN VieN: fi(R) e «(R, BR).

13f 50, the rule must beVPby Lemma 3 in Amobs (2002).
1435ee also Lemma 3 in Amos (2002) and Lemma 1 in Morimoto, Ching and Serizawa (2008)



Proof. Obvious?!®
Lemma 2. Let f,g € I'sp.

f domg & Vi e N,VRe S : B% C Bf.

Proof. (=) Leti € N,R € S. Without loss of generality, we assume= 1. Pick
X € B% arbitrarily. We can tak& € S such thatr(RL, [T1400,Q)]) = {x}. By Lemma
1, g*(RL R) = x. Sincef domg, f}(R',R) R! g}(R!,R). Hencef!(RL,R) = x. This
meansx € B:. , ,
() LetR = (RLR?) e sN. By Lemma 1,f(R) € (R, B%') andg (R) € (R, B%')
foralli € N. SinceB%- ¢ B®-, fi(R) R ¢g/(R). O

Lemma 3. (Amorbs (2002)) Ifx*, x', x” € T]1,[0, Q;] satisfy
[FieMstix -xT<Ix - x| v[3j e Ms.t 66 - x)(x - x)) < 0],
then there existR € S such thap(R) = x* andx”P(R)X'.
For the purpose of reference, we prepare an equivalent expression of Lemma 3.
Lemma 4.1f x*, X, X" € TTL1[0, Qj](xX’ # X”) satisfy
S[VieM X <x <x' VX <X <x],
then there existR € S such thaip(R) = x* andx”P(R)X'.
Lemma 5. Suppose that satisfiesSP, ERandWP. ThenU dom f.

Proof. We show thaB® c BUx for all i € N and allR € S. Then we obtain the conclu-
sion by Lemma 2. Without loss of generality, suppose thatl. LetR? € S. For all
Y € [T514100, Qj], definesyn(Y) = {y € [1{14[0,Q;] | Ix € Y s.t.y = Q - x}. ThenER

and the feasibility condition imply tha@'= ¢ sym{UC(R?, 2)).16

Step 1.YR2 € 5 : [p(R?) = p(R?) and UCR?, §) € UC(R%, §) = B'= c sym(UC(R, M.
Suppose not. We had ¢ S such thatp(R?) = p(R?), UC(RZ, £) ¢ UC(R?, 2)

and B'® ¢ sym(UC(R?, 2)). Then there exists a consumption bundisuch that

x € B andx ¢ symUC(RZ, £)). Obviously we can tak®&, € S such thatp(R) = x.

By Lemma 1,f(Ry, R?) = (x,Q - X). SinceB' c sym(UC(R, 2)), x ¢ B'%. Hence
f(Ry, R?) # (x, Q — X). But this contradict$VP.

15 f ¢ I'sp, thenB'® is closed set iM1}2,[0,Qj] foralli € N, Re S in our setup. Hence(R, Bfé-i) is
not empty for allR € SN andi € N. See Barbér and Peleg (1990), Le Breton and Weymark (1999).

. 18For eachR € R, and eachx € H’j‘ll[O,Q,-], UC(R, x) denotes the upper contour sebofvith respect to



Step 2.¥x € symUC(RE, £))\B= : IR € § s.t. p(R?) = p(R?) andQ - x ¢

UC(R?, 2).
Note that, for eachj € M, define
e G 3 5 < pi(RO).
anE otherwise, 1719, - pi(R) otherwise,

thenBY= = [T}24[a, bj]. Hence?yn(BUéZ) = 11219 - b}, Q; - aj. 1
Fix x € sym(UC(R?, £))\B'= arbitrarily. Note thatx # £ because € B'r.
HenceQ — x # % We show the following by contradiction.

_ Q; Q;
(x) =[VieM: 71 <Q-x < pi(R) VPR <Qj-x < 7’]
Suppose not. Then for ajle M, if % < Q) - x; < pj(R?), thenQ; — p;(R?) < x; and
Xj < % This is equivalent t; € [a;, b;]. Similarly we can show that for alj € M,
if pj(R) < Qj-x < % thenx; € [a;,b;]. Hence we have shown thate BY=, a

contradiction. We have obtainee)(
By Lemma 4, there exist’? € S such that

p(R?) = p(R?) and %P(ﬁz)(ﬂ— X). O
Proof of Theorem 10bviouslyU satisfiesERandWP. As is mentioned in section 2.2,
Sasaki(2003) showed thik satisfiesSSESPNext, we show the converse. Suppose

that f satisfieSNSESP, WRndER By Lemma 5U dom f. Sincef satisfieSNSESP
f domU. SinceU satisfiesSSSESPf = U. O

Appendix B : Proof of Theorem 2

Before we prove Theorem 2, we show the following lemma about the shape of the op-
tion set. Note that Lemma 6 holds in the environment with more than two individuals.

Lemma 6. Suppose that satisfiesSPandWP. Then
) m
Vie N,YReS,Vj e M, Ja;,bj € [0,Qj] s.t. Bk = ]—[[aj,bj].
j=1

Proof. Fix i € N andR € S arbitrarily. Without loss of generality, suppose that 1.
Let R? = R. Proof is done by two steps.

Step 1. B'= is convex.
To this end, suppose the contrary. That is, we assume

I, We B®,31€(0,1) s.t. 0+ (1— )W ¢ B

10



Let sedV, W] = {x € [114[0,Q;] | Fu € [0,1] s.t. x = p¥ + (1 - p)W}). Now we
consider the spaché2 N sedV, W]. If this space has infinite connected components,
thenB'= N sedV, W] has open cover which contains no finite subcovesagV, W]. But
this contradicts thaB'® N sedV, W] is compact. Hence this space has at most finite
connected components. This results in

I, we B, V1e(0,1) st v+ (1- Dwe B,
LetX = 1v+ Jwand letR € S be a preference which satisfipR) = .

Casel. {RR)=vV f{(RR)=w

We prepare a new notation. For eath= (di,---,dm) € H']-“:l{ej, -g;} and each
ye n’jil[o,gj], E(y,d) = {ze H’jll[O,Qj] | Iy1,-- -, ymeRystz=y+ ZEn:l?’jdj},
wheree; denotes them-dimensional vector in whicljth coordinate is 1 and other
coordinates are 0. Without loss of generality, we may asstifie R?) = v. Sup-
pose that fod = (dy,---,dn),d” = (d},--- ,dy) € H?‘zl{ej,—ej}, v € E(p(R), d) and
w € E(p(R), d’). Suppose also that d’ satisfy that

() VieM:[veE(pR.(-d;.d) v we E(p(R). (~dj.d"_y) = dj = ]

where ¢dj,d_j) = (d,---,dj_1,—dj,djs1,- -+, dm) and df, d’_j) is defined in the
same manner. Obviously there exigts M such thadj = —d;.. Sincevj < X < wj
orwj < % < vy, by Lemma 3, there exis®! € S such thatp(R') = X andwP(R)v.
Hencef!(R!, R?) # v by Lemma 1. But this contradicts weak peak-onlines$.of

Case2. HRR) #vA YRR #w
Letc= fYR R?). If
[Fje Ms.t|X —vjl <[X-cjl V (X=V}j)(X-cj) <0]
or
[Fj e Ms.t|X —wj| <IX-cj| vV (X—wj)(X-cj) <0],

then by Lemma 3,
[3R, e s s.t.p(R) = KA VP(R)c| v [FRy € § s.t. p(Ra) = XA WP(Ry)C].
This contradicts the fact that= f1(R R2) and f is weakly peak-only. Hence
[VieM 1 [X—vjl > |X—cj| A (X—Vj)(X—c;j) =0]

and

[VieM : |)~(j - Wil > [X— Gl A ()N(—Wj)()?—Cj) > 0].
Suppose thatl.d’ € [17,{ej, —¢)} satisfyv € E(p(R).d), w € E(p(R).d") and the
condition §+x) in Case 1 Fix j € M arbitrarily. If d; = —dj, thenc; = X; because
(X=vj)(X-cj) > 0and - wj)(X—cj) > 0. If dj = d, thenvj andw; can be repre-
sentedv; = &; + Ad; andw; = X; + 2’d; for some, 2. Sincex’= v+ 3w, 1 = 1.
Hencev; = wj = ;. SincelX; — vj| = |[X - ¢jl, IX— ¢j| = 0. Hencec; = X;. We have
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shownthat = X. X¢ Bféz andc e BleQ, a contradiction.

Step 2.V € M, 3a;, bj € [0,Q]] s.t. B = [T7,[ay, by].

For eachj € M, let Pr; denote the projection with respect fth coordinate.
Since Py is continuous andB’ is compact, F}I(Bféz) C [0,9Q] is compact. Let
a; = min Pr,-(BfQZ) andb; = maqu(BfQZ). We show thafTiL,{ay, bj} ¢ B by
contradiction. Without loss of generality, suppose that (- ,by) ¢ B'. Pick
R e S which satisfiep(R) = (b1, -, bm). Leth € B satisfy f1(R R?) = h. Since
h# by, bm),

3j’ e Ms.t.hy <by.

Sincebj = max Pq(BfFiZ), there existd e B such thaty, = bj.. Hence, by Lemma
31
IR € S s.t. p(RY) = (by. -+ . bm) A WP(RYh

becauségb; — h},l < |bj — hy|. However this implies that
f{(RLR?) # h.
This is a contradiction becaugdesatisfies weak peak-onliness.

Proof of Theorem 2.(1) Note thatf satisfies weak peak-onliness by Lemma 1 in
Morimoto, Ching and Serizawa (2008) and Lemma 3 in Adsof2002). We prove the
conclusion by contradiction. Suppose that for san@el'sp, g dom f but f = g. Then

(+++%) IRZeSsit. B c B%e.

If not, then B = B% for all R € S andB'% is a direct product of closed interval by

Lemma 6. This implies that#R, Bfr@) = 1forallR! € S by single-peakedness. Then,
we havef(R:, R?) = g(RL, R?) for all R* € S by Lemma 1. However this contradicts
the assumptiog # f. Hence ¢ = x) holds.

We havexe [17,[0, Q] such thatx"e B% andxX ¢ B®. LetR e S satisfy
p(R) = % By Lemma 6, for eaclj € M, there exisj, b; € [0,Q;] such thatB =
H’j‘ll[aj, bj]. Then for eachj € M, one of the following three holds;

(I) S(j <aj ((:) Qj—aj <Qj—)?j),
(i) X; € [ay,bj] (& Q) X €[Qj - b}, Qj - a]),
(III) bj < )?j ((:} Qj - )?j < Qj - b])

Letye B'= be defined by the following; for eache M, y; = g; if (i) holds, y; = X; if
(i) holds andy; = bj if (iii) holds. Obviously, (R, Bfr@) = {y}. Hence,

f{(RR?) =y and g"(R R?) = X.
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Now let’s consider the allotment for individual 2. Note that sifficgatisfiegespect
for unanimity Q — p(R?) € B'=. Hencep(R?) € syn(B=) = Li[Q; - bj, Q; - aj].
By the definition ofy andX; for eachj € M,

(I) = Qj—yj =Qj—aj,
(i) = Qj-yj=Q-%;
(III) = Qj_yj =Qj—bj.

Sincepj(R?) € [Q; - bj,Qj —aj] forall j € M,
YjeM: pj(Rz)st—yj Qi -X VQ-X<Q-y< pj(Rz).

Becausex# y, Q — X # Q —y. By the single-peakedness ®&f, (Q - y)P(R?)(Q - X).
Feasibility condition implies that

fARR?) =Q-y and ¢(RR) = Q- X
However this contradicts thgtdom f.

(2) Let f be a rule which satisfied/P andsymmetry We prove the conclusion by
contradiction. Suppose th& = (R', R?) € SN satisfiesR! = R? and f(R) # (%,
By symmetry f3(R)I(R') f?(R). Hence, by single-peakednessRif

-[Yje M pi(RY) < f1(R) < fA(R) v fA(R) < f1(R) < pj(RY)].

By Lemma 4, there exig® € S such thap(R) = p(R!) and f2(R)P(RY) f}(R). Define
= (RR). By WP, f(R) = f(R). However this contradicts theymmetryof f.

(3) Obvious.o

Appendix C : SP, ER and WP rules

In this appendix, | show that there are many rules which satiSBeERandWPexcept
for the equal division rule and the uniform rule.

Letm= 1 ande € [0, §]. f(© is the rule which satisfies the following; for eaBh € S,

B - [%—minep<R2) 2) 31 i3 < PR,
- 2 + min(e p(RZ)] if p(R%) < %,

and fOLRL R?) e 7(RL, B® ). Then, obviously for eacR € s, B'Y” = BK”.
Now | introduceSP, ERandWPrules withm > 2. Let (e, - - , em) € TT}14[0, &]

fleem js the rule allotting each commodities by the rule above. THen " satis-
fiesSP, ERandWP. 1/

"Note that if €1, ,€em) = (0,---,0), thenf(&-m s the equal division rule, and if{,-- ,em) =
(%, &m), thenf (e is the uniform rule.

13



References

[1] Amor6s, P. (2002),“Single-Peaked Preferences with Several Commodbies,”

cial Choice and Welfargl9, 57-67.

[2] Anno, H. (2008),“On the Second BestffiEiency in the Division Problem,”

3]

[4]

5]

[6]

[7]

(8]

9]

(10]

(11]

(12]

mimeo.

Barber, S. and Peleg, B. (1990),“Strategy-Proof Voting Schemes with Continu-
ous Preferences3ocial Choice and Welfay& ,31-38.

Ching, S. (1994),“An Alternative Characterization of the Uniform Rulegcial
Choice and Welfarel1,131-136.

Hurwicz, L. (1972),“On Informationally Decentralized Systems,Dacision and
Organization(McGuire and Radner, Eds.), pp.297-336, North-Holland, Amster-
dam.

Le Breton, M. and Weymark, J A. (1999),“Strategy-Proof Social Choice with
Continuous Separable Preferencdsfirnal of Mathematical Economic32, 47-
85.

Morimoto, S. Ching, S. and Serizawa, S. (2008),“A Characterization of the Uni-
form Rule with Several Goods and Agents,” mimeo.

Sasaki, H. (2003),“Limitation of Hciency:Strategy-Proofness and Single-
Peaked Preferences with Many Commodities,” Working Paper, Rice University.

Serizawa, S. (2002),“Irf&ciency of Strategy-Proof Rules for Pure Exchange
Economies,Journal of Economic Theor06, 219-241.

Serizawa, S. and Weymark, J A. (2003)fiEient Strategy-Proof Exchange and
Minimum Consumption Guarantees]burnal of Economic Theoryl09, 246-
263.

Sprumont, Y. (1991),“The Division Problem with Single-Peaked Preferences: A
Characterization of the Uniform Allocation Ruld&gtonometrica59, 509-519.

Zhou, L. (1991),"“Indficiency of Strategy-Proof Allocation Mechanisms in Pure
Exchange Economies3ocial Choice and Welfay8, 247-257.

14



