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1 Introduction

One of the most serious problem in designing a resource allocation rule is the trade-off

betweenstrategy-proofness(each agent cannot be better off by misreporting one’s pref-
erence) andPareto efficiency(allocations selected by a rule are Pareto efficient: that is,
there is no another feasible allocation in which every agent is not worse off and at least
one agent is better off). Particularly in the context of the pure exchange economies, it
is well-known that rules which satisfy bothstrategy-proofnessandPareto efficiencyad-
mit the unsymmetrical treatment of agents, typically the existence of the dictator (See
Hurwicz (1972), Zhou (1991), Serizawa (2002) and Serizawa and Weymark (2003)).

However, very different result is known in an environment withsingle-peaked
preferences. In his celebrated paper, Sprumont (1991) shows that the uniform rule
is the only rule which satisfiesanonymity(rules do not depend on names of agents)
(or envy-freeness(no agent prefers others’ consumption to one’s own consumption) ),
strategy-proofnessandPareto efficiencyin the economy with onlyonecommodity and
single-peaked preferences. Roughly speaking, the uniform rule is the rule that allo-
cates the same consumption for each individual, but if the sum of individuals’ peaks
is greater (smaller) than the total amount of the good supplied, then individuals whose
peaks are small(large) enough receive their own peaks and individuals whose peaks are
large(small) receive the equal division of the residual. That is, individuals whose peaks
are small enough have the priority if there is excess demand, and individuals whose
peaks are large enough have the priority if there is excess supply under the uniform
rule. In Sprumont’s environment, thestrategy-proofnessand thePareto efficiencydo
not imply the unsymmetrical treatment of agents unlike the pure exchange economy
(See Sprumont (1991) and Ching (1994)).

Single-peaked preferences and the uniform rule can naturally be extended tom
commodity environments. The uniform rule in the environment with more than one
commodities, which is referred to asthe generalized uniform rule, allocates commodi-
ties commodity by commodity on the basis of the uniform rule in the one commodity
environment. It may be a natural question : Does the generalized uniform rule satisfy
strategy-proofness, Pareto efficiencyand many equity conditions like one-dimensional
uniform rule? The answer for thestrategy-proofnessand equity conditions is positive,
but, unfortunately enough, the answer for thePareto efficiency is negative; the gen-
eralized uniform rule isnot Pareto efficient. Moreover, Amoŕos (2002) pointed out
that strategy-proofnessandPareto efficiencytogether result in the dictatorship under
the single-peaked preference environment with more than one commodities when the
number of individual is two. Even under the single-peaked preference environment,
if we suppose that the economy has several commodities, then the conflict between
strategy-proofnessandPareto efficiencyarises. We study the design of a rule in this
environment. Particularly, we consider rules which satisfies strategy-proofness, some
equity conditions and a notion of second best efficiency instead of Pareto efficiency.
We give a full characterization ofthe generalized uniform rulewhen there are only two
agents.

Regardless of the number of commodities, the (generalized) uniform rule satisfies
a solidarity condition calledsame-sidednesswhich is a necessary condition forPareto
efficiency. The same-sidednessis equivalent to thePareto efficiencyonly if there is
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only one commodity, and this is the key to Sprumont’s successful characterization.
However the condition in the environment with more than one commodities is strictly
weaker thanPareto efficiency. We discuss the condition in section 4 in detail.

Amorós (2002) characterized the generalized uniform rule bystrong symmetry(agents
who have the same preference recieve the same allotment) (orenvy-freeness), strategy-
proofnessandsame-sidednessin 2 personm goods economy. Morimoto, Ching and
Serizawa (2008) characterized the rule bysymmetry(agents who have the same prefer-
ence recieve indifferent allotments for them),strategy-proofness, respect for unanim-
ity(if the sum of peaks coincides with the social endowment, then each agent recieves
one’s own peak) andnon-bossiness1 in n personm goods economy.Respect for una-
nimity is a necessary forsame-sidedness, and it is very weaker thansame-sidedness
in general. However it is equivelent tosame-sidednessunderstrategy-proofnessand
non-bossiness. Hence Morimoto, Ching and Serizawa’s (2008) characterization is in
line with Amorós’ characterization withsame-sidednss.

Although the generalized uniform rule is not Pareto efficient, it is reasonable to ex-
pect that the generalized uniform rule has some efficiency properties relative to other
strategy-proof rules. Indeed, Sasaki (2003) shows that the generalized uniform rule
satisfies a notion of second best efficiency. More precisely, he showed that there ex-
ists no strategy-proof rule which Pareto dominates the generalized uniform rule for all
preference profiles even when the number of commodities is more than one but the
number of individuals is two. His result indicates that the generalized uniform rule is
still a prominent presence with respect to efficiency among the strategy-proof rules in
two personm commodities environment.

In this note, we introduce a second best efficiency condition which is weaker than
Sasaki’s, and characterize the generalized uniform rule with the condition in two person
economies. This note proceeds as follows: in section 2 we introduce our model and
axioms formally. Section 3 describes our main result. In section 4 we compare our
result with literatures’. Section 5 concludes.

2 Setup

2.1 Notations

Let N = {1, 2} be the set of individuals. LetM = {1, · · · ,m} represent the set of com-
modities. All commodities are perfectly divisible. The bundleΩ = (Ω1, · · · ,Ωm) ∈
Rm
++ denotes the endowment of commodities in this economy.2 B = {x = (x1, x2) ∈

(Rm
+ )2 | x1 + x2 = Ω} denotes the set of feasible allocations. We do not allow free

disposal.R denotes the set of complete, transitive and continuous binary relations on∏m
j=1[0,Ω j ].3

1If a change of an agent’s preference does not change the agent’s allotment, then it does not change other
agents’ allotment

2N denotes the set of natural numbers.R denotes the set of real numbers.R+ andR++ denote the set of
non-negative and positive real numbers, respectively.

3For eachR ∈ R, P(R) andI (R) denote the asymmetric part ofRand the symmetric part ofR, respectively.
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Definition. R ∈ R is single-peaked if there existsp(R) ∈ ∏m
j=1[0,Ω j ] such that for all

x, x′ ∈∏m
j=1[0,Ω j ](x , x′),[
∀ j ∈ M : x′j ≤ x j ≤ p j(R) ∨ p j(R) ≤ x j ≤ x′j

]
⇒ x P(R) x′.

Let S = {R ∈ R | R is single-peaked}. SN denotes the set of preference profiles. For
each preference profileR = (R1,R2) ∈ SN, R−1 = R2 andR−2 = R1.
τ(R,Y) denotes the best consumptions onY ⊆ ∏m

j=1[0,Ω j ] with respect toR ∈ S.
That is,τ(R,Y) = {x ∈ Y | ∀y ∈ Y : xRy}. In our setting, each individual has a continu-
ous preference on compact consumption set

∏m
j=1[0,Ω j ]. Hence, ifY ⊆∏m

j=1[0,Ω j ] is
closed, thenτ(R,Y) is not empty.

A function fromSN to B is calleda rule. The symbolBf i
R denotes the range of the

ith component function off when we fix the others’ preferenceR. That is, given a rule
f , for all R ∈ S, Bf 1

R = f 1(S × {R}) andBf 2
R = f 2({R} × S). We referBf i

R asthe option
set of individual i with respect to( f ,R).

The purpose of this note is to characterize the following rule which is known asthe
generalized uniform rule.

Definition. The generalized uniform ruleU : SN → B is the rule defined by the
following; for all R = (R1,R2) ∈ SN, all j ∈ M, all i ∈ N,

U i
j(R) =

min{p j(Ri), λ j(R)} if p j(R1) + p j(R2) ≥ Ω j ,

max{p j(Ri), µ j(R)} if p j(R1) + p j(R2) ≤ Ω j ,

where λ j(R) = Ω j −min{p j(R1), p j(R2)} and µ j(R) = Ω j −max{p j(R1), p j(R2)}.

2.2 Axioms

The following axiom requires that one cannot be better off by misreporting one’s pref-
erence.

Strategy-proofness (SP): For all R = (R1,R2) ∈ SN and allR̂ ∈ S, f 1(R) R1 f 1(R̂,R2)
and f 2(R)R2 f 2(R1, R̂).

ΓSP denotes the set of strategy-proof rules. The following axiom reflects the idea
that everyone should not be worse off than under the equal division rule.

Egalitarian rationality (ER)4: For all R = (R1,R2) ∈ SN and alli ∈ N, f i(R) Ri Ω
2 .

The following axiom requires that the rules should be “simple” in the sense a rule
depends only on the each individual’s peak of preference.

4This axiom is sometimes referred to asthe equal division lower bound.
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Peak-onliness : For all R = (R1,R2), R̃ = (R̃1, R̃2) ∈ SN, if p(R1) = p(R̃1) and
p(R2) = p(R̃2), then f (R) = f (R̃).

The next axiom requires that for each individual, his allotment can not change
without changing his peak under the condition other individuals’ preferences are un-
changed. Note that this axiom is weaker than peak-onliness in general. But in our 2
person setup, peak-onliness and weak peak-onliness are equivalent.

Weak peak-onliness (WP): For all R = (R1,R2),∀R̃1, R̃2 ∈ S, if p(R1) = p(R̃1), then
f 1(R) = f 1(R̃1,R2) and if p(R2) = p(R̃2), then f 2(R) = f 2(R1, R̃2).

To introduce our second best efficiency conditions, we need to prepare the next re-
lation onΓSP.

Definition. A binary relation dom⊆ ΓSP× ΓSP is defined as follows; for allf ,g ∈ ΓSP

f domg ⇔ ∀R = (R1,R2) ∈ SN,∀i ∈ N : f i(R) Ri gi(R).5

Our second best efficiency conditions are following two. Note that the latter is log-
ically stronger than the former.

Weak second best efficiency among strategy-proof rules (WSESP): f ∈ ΓSP and for all
g ∈ ΓSP, if g dom f , then f domg.

Strong second best efficiency among strategy-proof rules (SSESP): f ∈ ΓSP and for all
g ∈ ΓSP, if g dom f , then f = g.

Sasaki (2003) first introducedSSESPand showed that the generalized uniform rule
satisfiedSSESP.

3 Main Result

We now state our main result. The proof is given in Appendix A.

Theorem 1. The generalized uniform rule is the only rule which satisfies the egali-
tarian rationality, the weak peak-onliness and the weak second best efficiency among
strategy-proof rules.

The following examples show that Theorem 1 is a tight characterization. That is,
the lack of one of three axioms leads to multiplicity of rules.

5Note that dom is reflexive and transitive. Hence it is a preorder onΓSP. But it is not an order onΓSP in
general.

5



Example 1.An example of rules which satisfy both ER and WP, but do not satisfy WS-
ESP:Let E be the equal division rule defined as follows; for allR ∈ SN, E(R) = (Ω2 ,

Ω
2 ).

ObviouslyE satisfiesERandWPbutE does not satisfyWSESPbecauseU domE and
not E domU.

Example 2. An example of a rules which satisfy both WP and WSESP, but do not sat-
isfy ER:Let D(1) be the priority rule in which individual 1 has the priority defined as
follows; for all R = (R1,R2) ∈ SN, D(1)(R) = (p(R1),Ω − p(R1)). SinceD(1) is SP
and Pareto efficient, it must beWSESP. It is also clear thatD(1) satisfiesWP. However,
clearlyD(1) does not satisfyER.

Example 3. An example of a rule which satisfies both ER and WSESP, but does not
satisfies WP:Let f be the rule defined as follows. For allR = (R1,R2) ∈ SN,

f (R) =

(Ω,0) if Ω R1Ω
2 and 0R2Ω

2 ,

(Ω2 ,
Ω
2 ) otherwise.
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Obviously f satisfiesSPandER.
First we show thatU does not dominatef . By Lemma 3, there exists̃R1, R̃2 ∈ S

such thatp(R̃1) = p(R̃2) = (Ω1, · · · ,Ωm−1,0) andΩ P(R̃1)Ω2 and 0P(R̃2)Ω2 . Then
f (R̃1, R̃2) = (Ω,0) by Lemma 1. SinceU(R̃1, R̃2) = (Ω2 ,

Ω
2 ), U does not dominatef .

By Theorem 3.1 in Anno(2008), there existsf0 ∈ ΓSP such thatf0 is WSESPand
f0 dom f . Sincef satisfiesERand dom is transitive,f0 satisfiesER. f 1

0 (R̃1, R̃2)R̃1Ω P(R̃1)Ω2
and f 2

0 (R̃1, R̃2)R̃2 0 P(R̃2)Ω2 becausef0 dom f . SinceU(R̃1, R̃2) = (Ω2 ,
Ω
2 ), f0 , U. This

means thatf0 does not satisfyWP, because iff0 satisfiesWP, then by Theorem 1
f0 = U, a contradiction.

By Example 1,2 and 3, we have shown thataxioms in Theorem 1 are mutually
independent.

4 Discussion

As was mentioned in the introduction, the generalized uniform rule is not Pareto effi-
cient, but satisfies logically weaker conditions, namelysame-sidednessandrespect for
unanimity.

Pareto efficiency: For allg ∈ Γ, if g dom f , then f domg. 7

Same-sidedness: For all R ∈ SN, and all j ∈ M, (1) if
∑

i∈N p j(Ri) ≥ Ω j , then
f i
j (R) ≤ p j(Ri) for all i ∈ N, and (2) if

∑
i∈N p j(Ri) ≤ Ω j , then p j(Ri) ≤ f i

j (R) for

all i ∈ N. 8

6This kind of rules are first introduced by Hiroo Sasaki.
7Note that this is equivalent to the following statement. For allR = (R1,R2) ∈ SN, there is nox =

(x1, x2) ∈ B such that (1)xiRi f i (R) for all i ∈ N, and (2)xi0 Pi0 f i0(R) for somei0 ∈ N.
8It is well-known thatsame-sidednessis equivalent toPareto efficiencyif m= 1. See Sprumont (1991).

6



Respect for unanimity: For all R = (R1,R2) ∈ SN, if
∑

i∈N p(Ri) = Ω, then f (R) =
(p(R1), p(R2)).

Note thatrespect for unanimityis much weaker thansame-sidednessin general,
but in our setup they are equivalent underSP(See Lemma 1 in Morimoto, Ching and
Serizawa (2008)). Amorós (2002) pointed out the following.

Proposition 1 (Amorós (2002)). Suppose thatf ∈ ΓSP \ {D(1),D(2)}. Then f does not
satisfyPareto efficiency.

According to Proposition 1, if we hope to design a non-dictatorial rule which satis-
fiesSP, then we must give upPareto efficiency. Amorós (2002) and Morimoto, Ching
and Serizawa (2008) chosesame-sidednessor respect for unanimityinstead ofPareto
efficiency. Note that Proposition 2 is logically implied by Proposition 3.

Proposition 2 (Amorós (2002)). The generalized uniform rule is the only rule which
satisfiesSP, same-sidednessandstrong symmetry. 9

Proposition 3 (Morimoto, Ching and Serizawa (2008)). The generalized uniform rule
is the only rule which satisfiesSP, respect for unanimityandsymmetry. 10 11

Note that equity conditionsER, symmetryandstrong symmetryimply non-dictatorship.
As was pointed out in Proposition 1, if we hope to design aSPand non-dictatorial rule,
then we must give upPareto efficiency. That is, we must admit some profiles which are
not corresponded to a Pareto efficient allocation. Hence, they can be interpreted as the
“cost” of SPand non-dictatorship.

It is hard for us to decide profiles which is corresponded to non Pareto efficient allo-
cation.Same-sidednessandRespect for unanimityare restrictive in the sense that they
restrict profiles in which non Pareto efficiency arise to profiles in which

∑
i∈N p(Ri) , Ω.

But this is less attractive because there is no theoretical reason we treat profiles in which∑
i∈N p(Ri) = Ω as exceptions.

It is easy to check that if we have a rule which does not satisfyrespect for unanimity
(Same-sidedness), then we can construct a more efficient rule. Formally, if a rulef
does not satisfiesrespect for unanimity, then we have at least one preference profile
R′ = (R′1,R′2) ∈ SN such that

∑
i∈N p(R′i) = Ω but f (R′) , (p(R′1), p(R′2)). And

obviously we can constract more efficient rule f ′ by defining f ′(R′) = (p(R′1), p(R′2))
and f ′(R) = f (R) for all R , R′. Amorós’s justification forSame-sidednessis to
exclude this type of construction.12 Note that in the example aboveSP is not inherited

9Strong symmetry: For all R = (R1,R2) ∈ SN, if R1 = R2, then f 1(R) = f 2(R).
10Symmetry: For all R = (R1,R2) ∈ SN, if R1 = R2, then f 1(R)I (R1) f 2(R).
11Morimoto, Ching and Serizawa (2008) extremly extend Amorós’ (2002) characterization result. They

showed that the generalized uniform rule is the only rule satisfyingSP, respect for unanimity, symmetryand
non-bossiness in n person m commodity economy. Non-bossinessrequires that a change of an individual’s
preference under the condition his allotment is unchanged does not change the allotment for others.Non-
bossinessis trivially satisfied in our setup with only two individuals and the feasibility condition. Hence,
Proposition 3 is a special case of Morimoto, Ching and Serizawa’s result.

12Same-sidednessis referred to asCondition Ein Amorós (2002).
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by f′ in generalwhen f is SP.
ImposingRespect for unanimity(Same-sidedness) with SPexcludes theSP rules

which can be dominated by another (possibly notSP) rule. However, in this note,WS-
ESPexcludes only theSPrules which can be dominated by anotherSPrule. This gives
us an intuition thatSPandrespect for unanimitytogether imply our second best effi-
ciency condition. Theorem 2 (1) certifies this intuition to be true. In fact,respect for
unanimitywith SPimpliesSSESP. Note that Example 3 also showed thatWSESPdoes
not imply respect for unanimity. 13 The proof of Theorem 2 is given in Appendix B.

Theorem 2.
(1) If f satisfiesrespect for unanimityandSP, then f satisfiesSSESP.
(2) If f satisfiesWPandsymmetry, then f satisfiesstrong symmetry.
(3) If f satisfiesWP, symmetryandSP, then f satisfiesER.

(1) in Theorem 2 shows a sufficient condition forSSESPand note that the gener-
alized uniform rule is a rule which satisfies therespect for unanimityandSP. That is,
this result strengthens Sasaki’s (2003).

Note also that Theorem 1 and 2 together14 imply Proposition 2 and Proposition 3.

5 Concluding Remarks

In this note, we have shown that the generalized uniform rule is the only rule that
satisfiesER, WPandWSESPin two personm good economy with single-peaked pref-
erences. Furthermore, we also showed that axioms we employed are independent.

In the main theorem, we employedWSESP, but not justSP. In Appendix C, exam-
ples of rules which satisfySP, ERandWPother than the generalized uniform rule and
the equal division rule are provided. It shows that there are uncountably many rules
which satisfySP, ERandWP. This shows thatWSESP, not justSP, is crucial in our
characterization.

Whether our results can be extended to models with more than 2 individuals is still
open. We hope that some of our techniques help to solve the problem.

Appendix A : Proof of Theorem 1

Note that the assumption that there are only 2 individuals does not matter in Lemma
1,2,3 and 4.

Lemma 1. Let f be a rule.

f ∈ ΓSP⇔ ∀R ∈ SN,∀i ∈ N : f i(R) ∈ τ(Ri , Bf i
R−i ).

13If so, the rule must beWPby Lemma 3 in Amoŕos (2002).
14See also Lemma 3 in Amorós (2002) and Lemma 1 in Morimoto, Ching and Serizawa (2008)
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Proof. Obvious.15

Lemma 2. Let f ,g ∈ ΓSP.

f domg⇔ ∀i ∈ N,∀R ∈ S : Bgi
R ⊆ Bf i

R.

Proof. (⇒) Let i ∈ N,R ∈ S. Without loss of generality, we assumei = 1. Pick
x ∈ Bg1

R arbitrarily. We can takeR1 ∈ S such thatτ(R1,
∏m

j=1[0,Ω j ]) = {x}. By Lemma
1, g1(R1,R) = x. Since f dom g, f 1(R1,R) R1 g1(R1,R). Hence f 1(R1,R) = x. This
meansx ∈ Bf 1

R .
(⇐) Let R = (R1,R2) ∈ SN. By Lemma 1,f i(R) ∈ τ(Ri , Bf i

R−i ) andgi(R) ∈ τ(Ri , Bgi
R−i )

for all i ∈ N. SinceBgi
R−i ⊆ Bf i

R−i , f i(R) Ri gi(R). �

Lemma 3. (Amorós (2002)) Ifx∗, x′, x′′ ∈∏m
j=1[0,Ω j ] satisfy[

∃ j ∈ M s.t. |x∗j − x′′j | < |x∗j − x′j |
]
∨
[
∃ j ∈ M s.t. (x∗j − x′′j )(x∗j − x′j) < 0

]
,

then there existsR ∈ S such thatp(R) = x∗ andx′′P(R)x′.

For the purpose of reference, we prepare an equivalent expression of Lemma 3.

Lemma 4. If x∗, x′, x′′ ∈∏m
j=1[0,Ω j ](x′ , x′′) satisfy

¬[∀ j ∈ M : x∗j ≤ x′j ≤ x′′j ∨ x′′j ≤ x′j ≤ x∗j ],

then there existsR ∈ S such thatp(R) = x∗ andx′′P(R)x′.

Lemma 5. Suppose thatf satisfiesSP, ERandWP. ThenU dom f .

Proof. We show thatBf i
R ⊆ BU i

R for all i ∈ N and allR ∈ S. Then we obtain the conclu-
sion by Lemma 2. Without loss of generality, suppose thati = 1. Let R2 ∈ S. For all
Y ⊆ ∏m

j=1[0,Ω j ], definesym(Y) = {y ∈ ∏m
j=1[0,Ω j ] | ∃x ∈ Y s.t.y = Ω − x}. ThenER

and the feasibility condition imply thatBf 1
R2 ⊆ sym(UC(R2, Ω2 )).16

Step 1.∀R̃2 ∈ S :
[
p(R̃2) = p(R2) and UC(̃R2, Ω2 ) ⊆ UC(R2, Ω2 )⇒ Bf 1

R2 ⊆ sym(UC(R̃2, Ω2 ))
]
.

Suppose not. We havẽR2 ∈ S such thatp(R̃2) = p(R2), UC(R̃2, Ω2 ) ⊆ UC(R2, Ω2 )

and Bf 1
R2 * sym(UC(R̃2, Ω2 )). Then there exists a consumption bundlex such that

x ∈ Bf 1
R2 andx < sym(UC(R̃2, Ω2 )). Obviously we can takeRx ∈ S such thatp(Rx) = x.

By Lemma 1,f (Rx,R2) = (x,Ω − x). SinceBf 1
R̃2 ⊆ sym(UC(R̃2, Ω2 )), x < Bf 1

R̃2 . Hence
f (Rx, R̃2) , (x,Ω − x). But this contradictsWP.

15If f ∈ ΓSP, thenBf i
R is closed set in

∏m
j=1[0,Ω j ] for all i ∈ N, R ∈ S in our setup. Henceτ(Ri , B

f i
R−i ) is

not empty for allR ∈ SN andi ∈ N. See Barber̀a and Peleg (1990), Le Breton and Weymark (1999).
16For eachR ∈ R, and eachx ∈ ∏m

j=1[0,Ω j ], UC(R, x) denotes the upper contour set ofx with respect to
R.
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Step 2.∀x ∈ sym(UC(R2, Ω2 ))\BU1
R2 : ∃R̃2 ∈ S s.t. p(R̃2) = p(R2) andΩ − x <

UC(R̃2, Ω2 ).
Note that, for eachj ∈ M, define

a j =

Ω j − p j(R2) if Ω j

2 ≤ p j(R2),
Ω j

2 otherwise,
b j =

Ω j

2 if Ω j

2 ≤ p j(R2),

Ω j − p j(R2) otherwise,

thenBU1
R2 =
∏m

j=1[a j ,b j ]. Hencesym(BU1
R2 ) =

∏m
j=1[Ω j − b j ,Ω j − a j ].

Fix x ∈ sym(UC(R2, Ω2 ))\BU1
R2 arbitrarily. Note thatx , Ω

2 becauseΩ2 ∈ BU1
R2 .

HenceΩ − x , Ω2 . We show the following by contradiction.

(∗) ¬
[
∀ j ∈ M :

Ω j

2
≤ Ω j − x j ≤ p j(R

2) ∨ p j(R
2) ≤ Ω j − x j ≤

Ω j

2

]
.

Suppose not. Then for allj ∈ M, if Ω j

2 ≤ Ω j − x j ≤ p j(R2), thenΩ j − p j(R2) ≤ x j and

x j ≤ Ω j

2 . This is equivalent tox j ∈ [a j ,b j ]. Similarly we can show that for allj ∈ M,

if p j(R2) ≤ Ω j − x j ≤ Ω j

2 , thenx j ∈ [a j , b j ]. Hence we have shown thatx ∈ BU1
R2 , a

contradiction. We have obtained (∗).
By Lemma 4, there exists̃R2 ∈ S such that

p(R̃2) = p(R2) and
Ω

2
P(R̃2)(Ω − x). �

Proof of Theorem 1.ObviouslyU satisfiesERandWP. As is mentioned in section 2.2,
Sasaki(2003) showed thatU satisfiesSSESP. Next, we show the converse. Suppose
that f satisfiesWSESP, WPandER. By Lemma 5,U dom f . Since f satisfiesWSESP,
f domU. SinceU satisfiesSSESP, f = U. �

Appendix B : Proof of Theorem 2

Before we prove Theorem 2, we show the following lemma about the shape of the op-
tion set. Note that Lemma 6 holds in the environment with more than two individuals.

Lemma 6. Suppose thatf satisfiesSPandWP. Then

∀i ∈ N,∀R ∈ S,∀ j ∈ M,∃a j ,b j ∈ [0,Ω j ] s.t. Bf i
R =

m∏
j=1

[a j ,b j ].

Proof. Fix i ∈ N andR ∈ S arbitrarily. Without loss of generality, suppose thati = 1.
Let R2 = R. Proof is done by two steps.

Step 1. Bf 1
R2 is convex.

To this end, suppose the contrary. That is, we assume

∃v̂, ŵ ∈ Bf 1
R2 ,∃λ ∈ (0,1) s.t. λv̂+ (1− λ)ŵ < Bf 1

R2 .
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Let seg[v̂, ŵ] = {x ∈ ∏m
j=1[0,Ω j ] | ∃µ ∈ [0, 1] s.t. x = µv̂ + (1 − µ)ŵ}. Now we

consider the spaceBf 1
R2 ∩ seg[v̂, ŵ]. If this space has infinite connected components,

thenBf 1
R2 ∩ seg[v̂, ŵ] has open cover which contains no finite subcover inseg[v̂, ŵ]. But

this contradicts thatBf 1
R2 ∩ seg[v̂, ŵ] is compact. Hence this space has at most finite

connected components. This results in

∃v,w ∈ Bf 1
R2 ,∀λ ∈ (0,1) s.t. λv+ (1− λ)w < Bf 1

R2 .
Let x̃ = 1

2v+ 1
2w and letR̃ ∈ S be a preference which satisfiesp(R̃) = x̃.

Case 1. f1(R̃,R2) = v∨ f 1(R̃,R2) = w
We prepare a new notation. For eachd = (d1, · · · , dm) ∈ ∏m

j=1{ej ,−ej} and each
y ∈ ∏m

j=1[0,Ω j ], E(y,d) = {z ∈ ∏m
j=1[0,Ω j ] | ∃γ1, · · · , γm ∈ R+ s.t.z= y+

∑m
j=1 γ jd j},

whereej denotes them-dimensional vector in whichjth coordinate is 1 and other
coordinates are 0. Without loss of generality, we may assumef 1(R̃,R2) = v. Sup-
pose that ford = (d1, · · · ,dm),d′ = (d′1, · · · ,d′m) ∈ ∏m

j=1{ej ,−ej}, v ∈ E(p(R̃),d) and
w ∈ E(p(R̃),d′). Suppose also thatd, d′ satisfy that

(∗∗) ∀ j ∈ M :
[
v ∈ E(p(R̃), (−d j ,d− j)) ∨ w ∈ E(p(R̃), (−d′j ,d

′
− j))⇒ d j = d′j

]
,

where (−d j ,d− j) = (d1, · · · ,d j−1,−d j ,d j+1, · · · , dm) and (−d′j ,d
′
− j) is defined in the

same manner. Obviously there existsj′ ∈ M such thatd j′ = −d j′ . Sincev j′ < x̃ j′ < w j′

or w j′ < x̃ j′ < v j′ , by Lemma 3, there existŝR1 ∈ S such thatp(R̂1) = x̃ andwP(R̂1)v.
Hencef 1(R̂1,R2) , v by Lemma 1. But this contradicts weak peak-onliness off .

Case 2. f1(R̃,R2) , v∧ f 1(R̃,R2) , w
Let c = f 1(R̃,R2). If

[∃ j ∈ M s.t. |x̃ j − v j | < |x̃− c j | ∨ (x̃− v j)(x̃− c j) < 0]

or
[∃ j ∈ M s.t. |x̃ j − w j | < |x̃− c j | ∨ (x̃− w j)(x̃− c j) < 0],

then by Lemma 3,[
∃R̃v ∈ S s.t. p(R̃v) = x̃∧ vP(R̃v)c

]
∨
[
∃R̃w ∈ S s.t. p(R̃w) = x̃∧ wP(R̃b)c

]
.

This contradicts the fact thatc = f 1(R̃,R2) and f is weakly peak-only. Hence

[∀ j ∈ M : |x̃ j − v j | ≥ |x̃− c j | ∧ (x̃− v j)(x̃− c j) ≥ 0]

and
[∀ j ∈ M : |x̃ j − w j | ≥ |x̃− c j | ∧ (x̃− w j)(x̃− c j) ≥ 0].

Suppose thatd,d′ ∈ ∏m
j=1{ej ,−ej} satisfy v ∈ E(p(R̃),d), w ∈ E(p(R̃),d′) and the

condition (∗∗) in Case 1. Fix j ∈ M arbitrarily. If d j = −d′j , thenc j = x̃ j because
(x̃− v j)(x̃− c j) ≥ 0 and (x̃− w j)(x̃− c j) ≥ 0. If d j = d′j , thenv j andw j can be repre-

sentedv j = x̃ j + λd j andw j = x̃ j + λ
′d j for someλ, λ′. Sincex̃ = 1

2v + 1
2w, λ = λ′.

Hencev j = w j = x̃ j . Since|x̃ j − v j | ≥ |x̃ − c j |, |x̃ − c j | = 0. Hencec j = x̃ j . We have

11



shown thatc = x̃. x̃ < Bf 1
R2 andc ∈ Bf 1

R2 , a contradiction.

Step 2. ∀ j ∈ M,∃a j ,b j ∈ [0,Ω j ] s.t. Bf 1
R2 =
∏m

j=1[a j , b j ].
For each j ∈ M, let Prj denote the projection with respect tojth coordinate.

Since Prj is continuous andBf 1
R2 is compact, Prj(B

f 1
R2 ) ⊆ [0,Ω j ] is compact. Let

a j = min Prj(B
f 1
R2 ) and b j = max Prj(B

f 1
R2 ). We show that

∏m
j=1{a j ,b j} ⊆ Bf 1

R2 by

contradiction. Without loss of generality, suppose that (b1, · · · ,bm) < Bf 1
R2 . Pick

˜̃R ∈ S which satisfiesp( ˜̃R) = (b1, · · · ,bm). Let h ∈ Bf 1
R2 satisfy f 1( ˜̃R,R2) = h. Since

h , (b1, · · · ,bm),
∃ j′ ∈ M s.t.h j′ < b j′ .

Sinceb j′ = max Prj(B
f 1
R2 ), there existsh′ ∈ Bf 1

R2 such thath′j′ = b j′ . Hence, by Lemma
3,

∃R1 ∈ S s.t. p(R1) = (b1, · · · ,bm) ∧ h′P(R1)h

because|b j′ − h′j′ | < |b j′ − h j′ |. However this implies that

f 1(R1,R2) , h.

This is a contradiction becausef satisfies weak peak-onliness.�

Proof of Theorem 2.(1) Note that f satisfies weak peak-onliness by Lemma 1 in
Morimoto, Ching and Serizawa (2008) and Lemma 3 in Amorós (2002). We prove the
conclusion by contradiction. Suppose that for someg ∈ ΓSP, g dom f but f , g. Then

(∗ ∗ ∗) ∃R2 ∈ S s.t.Bf 1
R2 ( Bg1

R2 .

If not, thenBf 1
R2 = Bg1

R2 for all R2 ∈ S andBf 1
R2 is a direct product of closed interval by

Lemma 6. This implies that #τ(R1, Bf 1
R2 ) = 1 for all R1 ∈ S by single-peakedness. Then,

we havef 1(R1,R2) = g1(R1,R2) for all R1 ∈ S by Lemma 1. However this contradicts
the assumptiong , f . Hence (∗ ∗ ∗) holds.

We have ˜x ∈ ∏m
j=1[0,Ω j ] such that ˜x ∈ Bg1

R2 and x̃ < Bf 1
R2 . Let R̃ ∈ S satisfy

p(R̃) = x̃. By Lemma 6, for eachj ∈ M, there exista j , b j ∈ [0,Ω j ] such thatBf i
R =∏m

j=1[a j ,b j ]. Then for eachj ∈ M, one of the following three holds;

(i) x̃ j < a j (⇔ Ω j − a j < Ω j − x̃ j),

(ii) x̃ j ∈ [a j ,b j ] (⇔ Ω j − x̃ j ∈ [Ω j − b j ,Ω j − a j ]),

(iii) b j < x̃ j (⇔ Ω j − x̃ j < Ω j − b j).

Let y ∈ Bf 1
R2 be defined by the following; for eachj ∈ M, y j = a j if (i) holds, y j = x̃ j if

(ii) holds andy j = b j if (iii) holds. Obviously,τ(R̃, Bf 1
R2 ) = {y}. Hence,

f 1(R̃,R2) = y and g1(R̃,R2) = x̃.

12



Now let’s consider the allotment for individual 2. Note that sincef satisfiesrespect

for unanimity, Ω − p(R2) ∈ Bf 1
R2 . Hencep(R2) ∈ sym(Bf 1

R2 ) =
∏m

j=1[Ω j − b j ,Ω j − a j ].
By the definition ofy and x̃, for eachj ∈ M,

(i) ⇒ Ω j − y j = Ω j − a j ,

(ii) ⇒ Ω j − y j = Ω j − x̃ j ,

(iii) ⇒ Ω j − y j = Ω j − b j .

Sincep j(R2) ∈ [Ω j − b j ,Ω j − a j ] for all j ∈ M,

∀ j ∈ M : p j(R
2) ≤ Ω j − y j ≤ Ω j − x̃ j ∨ Ω j − x̃ j ≤ Ω j − y j ≤ p j(R

2).

Because ˜x , y, Ω − x̃ , Ω − y. By the single-peakedness ofR2, (Ω − y)P(R2)(Ω − x̃).
Feasibility condition implies that

f 2(R̃,R2) = Ω − y and g2(R̃,R2) = Ω − x̃.

However this contradicts thatg dom f .

(2) Let f be a rule which satisfiesWPandsymmetry. We prove the conclusion by
contradiction. Suppose thatR = (R1,R2) ∈ SN satisfiesR1 = R2 and f (R) , (Ω2 ,

Ω
2 ).

By symmetry, f 1(R)I (R1) f 2(R). Hence, by single-peakedness ofR1,

¬[∀ j ∈ M : p j(R
1) ≤ f 1

j (R) ≤ f 2
j (R) ∨ f 2

j (R) ≤ f 1
j (R) ≤ p j(R

1)].

By Lemma 4, there exist̂R ∈ S such thatp(R̂) = p(R1) and f 2(R)P(R̂1) f 1(R). Define
R̂ = (R̂, R̂). By WP, f (R̂) = f (R). However this contradicts thesymmetryof f .

(3) Obvious.�

Appendix C : SP, ER and WP rules

In this appendix, I show that there are many rules which satisfiesSP, ERandWPexcept
for the equal division rule and the uniform rule.

Let m= 1 andε ∈ [0, Ω2 ]. f (ε) is the rule which satisfies the following; for eachR2 ∈ S,

Bf (ε)1

R2 =

[ Ω2 −min{ε, p(R2) − Ω2 },
Ω
2 ] if Ω

2 ≤ p(R2),

[ Ω2 ,
Ω
2 +min{ε, Ω2 − p(R2)}] if p(R2) ≤ Ω2 ,

and f (ε)1(R1,R2) ∈ τ(R1, Bf (ε)1

R2 ). Then, obviously for eachR ∈ S, Bf (ε)2
R = Bf (ε)1

R .
Now I introduceSP, ERandWP rules withm ≥ 2. Let (ε1, · · · , εm) ∈ ∏m

j=1[0, Ω j

2 ].
f (ε1,··· ,εm) is the rule allotting each commodities by the rule above. Thenf (ε1,··· ,εm) satis-
fiesSP, ERandWP. 17

17Note that if (ε1, · · · , εm) = (0, · · · ,0), then f (ε1,··· ,εm) is the equal division rule, and if (ε1, · · · , εm) =
(Ω1

2 , · · · ,
Ωm
2 ), then f (ε1,··· ,εm) is the uniform rule.
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