メディシンボール後方投げにおける
ボール重量の違いが発揮パワーと飛距離に
及ぼす影響

Effect of ball weight differences in power and distance in
the back overhead medicine ball throw

早稲田大学　大学院スポーツ科学研究科
スポーツ科学専攻　コーチング科学研究領域

5010A005-4
荒井　進之介
Arai, Shinnosuke

研究指導教員：　岡田　純一　准教授
目次

第Ⅰ章 序論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1

Ⅰ-1 緒言 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 1
Ⅰ-2 研究小史 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 2
 Ⅰ-2-ⅰ パワーを評価すること ・・・・・・・・・・・・・・・・ 2
 Ⅰ-2-ⅱ MB 後方投げにおけるパワー評価研究 ・・・・・・・・ 3

第Ⅱ章 方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5

Ⅱ-1 被験者 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
Ⅱ-2 試行 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5
Ⅱ-3 測定項目 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
 Ⅱ-3-ⅰ 飛距離の測定 ・・・・・・・・・・・・・・・・・・・・ 6
 Ⅱ-3-ⅱ 床反力の測定 ・・・・・・・・・・・・・・・・・・・・ 7
 Ⅱ-3-ⅲ 動作映像の記録 ・・・・・・・・・・・・・・・・・・・・ 7
Ⅱ-4 データ分析 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8
 Ⅱ-4-ⅰ 分析項目 ・・・・・・・・・・・・・・・・・・・・・・・ 9
 Ⅱ-4-ⅱ 統計処理 ・・・・・・・・・・・・・・・・・・・・・・・ 12

第Ⅲ章 結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13

Ⅲ-1 重量と飛距離の関係 ・・・・・・・・・・・・・・・・・・・ 13
Ⅲ-2 重量と発揮パワーの関係 ・・・・・・・・・・・・・・・・ 14
 Ⅲ-3-ⅰ 投球時の床反力 (N) ・・・・・・・・・・・・・・・・ 14
 Ⅲ-3-ⅱ 床反力の立ち上がり速度 (N/s) ・・・・・・・・・・ 17
 Ⅲ-3-ⅲ 脚伸展パワー (W) ・・・・・・・・・・・・・・・・・・・ 18
 Ⅲ-2-ⅳ ボールに伝えられた平均パワー (W) ・・・・・・・ 21
 Ⅲ-2-ⅵ MB のリリース速度及び投射角 ・・・・・・・ 23

第Ⅳ章 考察 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 27

Ⅳ-1 重量と発揮パワーの関係 ・・・・・・・・・・・・・・・ 27
Ⅳ-2 発揮パワーと飛距離の関係 ・・・・・・・・・・・・・・・・ 30
Ⅳ-3 MB 後方投げの特徴的傾向 (床反力の様相) ・・・・・・・・ 31

第Ⅴ章 結論 ・・・・・・・・・・・・・・・・・・・・・・・・・・・ 33

第Ⅵ章 参考文献 ・・・・・・・・・・・・・・・・・・・・・・・・ 34

謝辞 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 40
第Ⅰ章 序論

I-1 緒言

急激な力の増加を伴って発揮されるパワー（爆発的なパワー）は様々なスポーツ活動において、成功を収めるための重要な要素であるとされる。特にスポーツの中で数多くみられる、跳ぶ、打つ、投げる、蹴る、走るといった運動は、いずれもこのパワーの発揮が運動の良し悪しと大きな関わりを持っている。典型的な爆発的なパワーは、“power zone”と呼ばれる下肢三関節の伸展動作によるものであり、スポーツ動作のほとんどは主働筋やその使い方に違いはあるが、筋収縮によって発揮されるこのパワー発揮を伴って行われる。

このような爆発的な下肢の発揮パワー向上を目的としたトレーニングの1つとして、「メディシンボール（以下 MB後方投げ）」が挙げられる。MB後方投げで用いられるMBは、皮やナイロンの素材で作られたボールに砂などをつめて作られ、一般的には1〜5kgほどの重量のものが使用されている。MBは様々な球技において使用されるボールや投擲種目において用いられる投擲物よりも重量が大きく、大きな投球飛距離を得ようとする場合には、下肢を中心とした爆発的なパワーの発揮が必要とされる。そのためMB後方投げは全身の爆発的パワー養成のために有効なトレーニングであるとされ、様々なスポーツトレーニング場面で普及している。さらにMB後方投げの飛距離と垂直跳びの垂直高から推定されるパワーとの間に有意な相関関係が認められていることから、選手のパワー発揮能力の指標としてMB後方投げ飛距離が用いられることもある。

効果的なトレーニングを実施するためには、適切な負荷・重量を用いることが必要であり、レジスタンスエクササイズにお
いてパワーの向上を目的としたトレーニングの場合は、負荷は最大両上重の75〜85%の重量が適切であるとされている。しかしながら、MB後方投げにおいて使用するボールの重量については、明確な基準は定められておらず、スポーツトレーニングの現場ではMB後方投げのトレーニングで使用するボールの重量は、選手が投げやすい重量をトレーニング指導者が設定する、もしくは前例を参考に、経験的かつ主観的に設定されることが多い。さらに、パワー発揮能力の指標として用いられるMB後方投げの飛距離と身体が発揮したパワーとの関係も不明である。したがって、トレーニングにおいて、適切なメディシンボール重量の選択の指針を得ることは、トレーニングの質の向上、それに伴う競技力向上の一助となる。

そこで本研究はMB後方投げにおいて発揮されるパワーに対するMB重量の影響、およびMB後方投げにおいて発揮されるパワーと飛距離との関係を明らかにすることを目的とした。

I-2 研究小史
I-2-1 パワーを評価すること

体力とは、人間すべての活動の源となり、顕著に評価することができる諸能力を総合したものである。また体力を構成する要素として体力要素という言葉が使われる。Curetonは体力の要素として6項目を掲げ、その一項をパワーとしている。体力要素（身体能力）を評価することは、選手の競技の特性を評価すること、改善の必要な身体機能を特定すること、目標の設定、成長の評価をする上で重要である。またそれらを適確に評価するためには妥当性を考慮し、より目的に適したテストを選択しなくてはならない。特にパ
ワーテストは、総合的な運動能力や特定のトレーニングプログラムの効果を評価するためのフィールドテストとして、広く活用されている。

I-2-ii 身体が発揮するパワーとその評価方法

パワーとは、最大努力のもとで（筋活動により）爆発的に発揮される機械的パワー、ないしは短時間内に多くの機械的エネルギーを発揮する能力である。身体が発揮するパワーの評価を行うテストとして、最も代表的なワーテストは跳躍高を測定する垂直跳びである。このテストは、1921年にD.A. Sargentが考案し、L.W. Sargentがワーテストとして発展をさせた。垂直跳びは、床反力計のような専門的技術を必要とする高価な計器は使用せず、簡易的なパワー評価指標として広く知られており、MacCloyは「垂直跳びはパワーを評価する最上のテストの1つである」とも述べている。またその他にマルガリア・カラメンテスト、立ち幅跳び、反復バウンディング、ショットプッシュなどのテストによって、局所的または全身的なパワーが評価されている。そして、一種の抵抗運動の器具であったMBを使用し、Stockbruggerらは全身の爆発的パワーの指標としてMB後方投げを提案した。

I-2-iii MB後方投げにおけるパワー評価研究

Stockbruggerらは、両手でMBを持ち、脚伸展動作を用いて、出来るだけ遠くにMBを後方に投げるよう試みた。そしてMB後方投げでの最大飛距離とPower Indexの関係を調べている。なおこのPower Indexは、垂直跳びの跳躍高からLewisの公式を用い、算出している。

\[
\text{Power Index} = 2.21 \cdot \text{body mass (kg)} \cdot \sqrt{\text{vertical jump (m)}}
\]

図1：Lewisの公式
この研究では、男女両性においてMB後方投げの最大飛距離とPower Indexは強い相関関係を示し（r=0.97）、MB後方投げはパワー測定の1つとして妥当性があるとされた。さらにStockbruggerらは、バレーボール選手で構成されるジャンプトレーニング群とレスリング選手で構成される非ジャンプトレーニング群の両群において、同様にMB後方投げの最大飛距離とPower Indexは強い相関関係を示す（それぞれr=0.87、r=0.92）と報告している。またMayhewらは、MB後方投げでの最大飛距離とフォースプレート上での垂直跳びのピークパワー、平均パワーとの関係を調べている。この研究では、ピークパワーをパワーの最大値、平均パワーは床反力の曲線下的面積から求め、40人の大学フットボール選手においてMB後方投げの最大飛距離とピークパワーは中程度の相関関係を示し（r=0.59）、MB後方投げの最大飛距離と平均パワーは強い相関関係を示す（r=0.63）と報告した。

以上のように、パワー評価指標としてMB後方投げの飛距離が使用されてきた。しかしながら、従来の研究において飛距離と有意な相関関係が認められているのは、あくまでも垂直跳びにおける発揮パワーの指標（Power Index）であり、MB後方投げ動作中のパワーではない。これまでにMB後方投げの動作中の力を経時的に分析した研究は窪らが行った3例ののみであり、パワーについては研究されていない。MB後方投げを爆発的パワー発揮のためのトレーニングとして用いる、あるいはMB後方投げの飛距離を発揮パワーの指標として用いるためには、MB後方投げにおいて発揮されるパワーや、発揮パワーと投球飛距離との関係を明らかにすることが重要であるろう。
第Ⅱ章 方法

Ⅱ-1 被験者

被験者は、定期的な運動習慣を持つ健康な男性20名とした。各被験者の身体特性（平均値±標準偏差）は、年齢21.3±2.2歳（18-25歳）、身長172.2±5.44cm、体重69.6±8.54kgであった。実験に先立ち、被験者に本研究の目的、方法および実験参加に伴い予期される危険性について、文書ならびに口頭にて十分に説明を行い、全ての被験者から書面による参加の承諾を得た。また本研究は、早稲田大学人を対象とする研究に関する倫理委員会の承認を得て実施された（申請番号2011-089）。

Ⅱ-2 試行

本試行に先立ち被験者に対して、MB後方投げの説明を行い、その後デモンストレーションを見せた。そして引き続きウォーミングアップ・練習を行い、「十分に練習が出来た」と被験者の申し出を受けた後に、本試行へ移行した。

MB重量は1、2、3、4および5kgを使用し（BF9161-9165、Reebok社製）、各2球ずつ計10投の投球を行った。始めの5投で全重量を投球するように順序をランダムに設定した。また後半の5投の順序もランダムに設定した。なおMBの直径は全て228mmであった。投球動作はStockbruggerら51)に倣い、肩幅の広さに足幅をとり、胸の位置に両手でMBを保持した立位静止姿勢から動作を開始した（図2-a）。股関節と膝関節を屈曲すると同時にMBを胸から腰の高さにかけボールの高さを下げ（図2-b）、その後動作を切り返し、下肢三関節を伸展させるとともにボールを挙上させ、自身の後方へ全力で投球をした（図2-c）。この時の反動動作は1回のみとした。なお本試行は全て室内で行われ、全ての投球は裸足にて
行った。

図2：MB後方投げ

被験者には出来るだけボールを遠くに飛ばすように指示をした。なお疲労の影響を考慮し、各試行間には少なくとも1分間の休息をとった。

II-3測定項目

II-3-1飛距離の測定

飛距離の測定は、指定の円弧内（図3）に投げられた試行のみを採用し、被験者の踵部から落下地点までの直線距離を、メジャーロープを用いて計測をした。指定の円弧は、カメラの位置と投球地点を結んだ線に直交するように点線を引き、その点線を中心とし、中心角30度になるように直線を図のように2本引き、その間に同心円弧を1m間隔に描いた。なお円弧から外れた試行は無効試技とし、投球を再度行った。
図3：飛距離測定における円弧

II-3-ii 床反力の測定

投球時の右脚に作用する床反力をForce platform(FP6012-15、Bertec社製)を用いて測定を行った。右足をForce platform上に配置させ、体重が左右均等となる立位静止姿勢から投球を行わせた。またForce platformのアナログ信号は専用のアンプによって増幅した後、A/D変換カード(ADA16-32/2(CB)F、CONTEC社製)を介してデジタル変換し、サンプリング周波数1000Hzでデータ収録ソフト(VitalRecorder2、キッセイコムテック株式会社製)を用いて、パーソナルコンピュータに取り込んだ。

なお予備実験において、両脚それぞれのMB後方投げ動作中の床反力を測定し、ピーク床反力また床反力の経時的変化に差異が無く、左右対称動作であることを確認した。

II-3-iii 動作映像の記録

ハイスピードカメラ(EX-FH20、カシオ計算機株式会社製)を用いて、被験者の矢状面上の動作を210fpsで撮影した。カメラは被験者の右側方
9.0m、地面から1.0mの地点に設置をした。被験者の肩峰点、橈骨点、尺骨茎突点、転子点、外側上頚最突出点、外果最突出点、胸骨上端、肋骨下端、つま先および耳垂の計9点に約4cm四方の色マークを貼付した（図4）。またキャリブレーションは、Force platformの中心面から1.0mの地点を中心として、鉛直方向1.0m、投球方向1.0mで行った。

図4：色マークー貼付位置

II-4 データ分析

データ解析ソフトウェア（KineAnalyzer、キッセイコムテック株式会社製）を用いて、撮影した動作映像の色マークーのデジタイズを行った。なお得られた座標データは、8Hz以上の高周波成分を除去し平滑化を行った後23）、三次スプライン補間を行い、1000Hzとした。また床反力データ、動作映像の同期はデータ解析ソフトウェア（KineAnalyzer、キッセイコムテック株式会社製）上で行った。
II -4- i 分析項目

本研究では、MB後方投げ動作に関連することが予測される動作の要因を、以下の通りに算出した。

・ピーケ床反力 (N)（図 5）:

Force platformから得られた床反力の生データの鉛直成分と推進成分を合成した床反力値の最大値とした。なお投球動作を開始してボールをリリースするまでの間における最大値とした。

床反力 (N) = \sqrt{(床反力 鉛直成分)² + (床反力 推進成分)²}

・床反力の立ち上がり速度 (N/s)（図 5）:

鉛直成分と推進成分を合成した床反力値の立ち上がり速度の最大値とした。ごく短時間の限られた時間内に、いかに素早く大きな力を発揮できるか評価を行った。なお床反力の鉛直成分と推進成分は共に11点の移動平均を行った。また立ち上がり速度は、床反力値に3点微分公式2)を用い、算出した。なお投球動作を開始してボールをリリースするまでの間における最大値とした。

床反力の立ち上がり速度 (N/s) = \{ 床反力t (N) + 床反力t+1 (N) \} / 時間 (s)

床反力tを時刻tにおける計測データとする

・床反力の立ち上がり時間 (s)（図 5）:

Force platformから得られた床反力の生データの鉛直成分と推進成分を合成した床反力が最小値から最大値に至るまでの時間とした。

床反力の立ち上がり時間 (s) = 床反力値が最小値から最大値に至るまでの時間
・脚伸展パワー (W) （図 6）：

転子点における速度の鉛直成分に、床反力の鉛直成分を積した値の最大値とした。また床反力の鉛直成分は、Force platform から得られた床反力の生データを採用した。なお投球動作を開始してボールをリリースするまでの間における最大値とした。

脚伸展パワー (W) = 転子点における速度の鉛直成分 (m/s) ・ 床反力の鉛直成分 (N)

図 5：ピーク床反力、床反力の立ち上がり時間および床反力の立ち上がり速度
図6:ピーク床反力と脚伸展パワー

・ボールに伝達された平均パワー(W):

投球動作を開始し、動作を切り返してからリリースするまでの間におけるボールに加えられたパワーの平均値とした。すなわち投球動作における、ボールの速度が0となる動作の切り返し点とリリース地点について、運動エネルギーと位置エネルギーを合わせたものである力学的エネルギーの差を算出し、その値を動作の切り返し点からリリースまでの時間で除した。

位置エネルギー(J) = 質量(kg)・重力加速度(m/s²)・鉛直方向の座標値(m)
運動エネルギー(J) = 質量(kg)・速度(m/s)^2 / 2

・転子点における速度(m/s):

デジタイズされた座標点に3点微分公式を用い、値を算出した。

・リリース速度(m/s):
リリースした瞬間の速度をリリース速度とした。なお MB の中心点と尺骨茎突点の点間距離が動作中の平均点間距離から 2SD 以上点間距離が長くなり、それ以降も点間距離が長く続ける瞬間をリリースとした。

リリース速度 (m/s) = \sqrt{(X_{t+1} - X_t)^2 + (Y_{t+1} - Y_t)^2} / 時間 (s)
リリース時刻 t における座標点を (X_t, Y_t) とする

・投射高 (m)：
リリースした瞬間において、MB の中心点の地面からの高さを投射高とした。

・投射角 (°)：
リリースした瞬間において、地面と投射方向が成す角度を投射角とした。
リリースした MB の中心点と 1 フレーム後 (1/210 秒後) の MB の中心点を結ぶ線分が地面と成す角度とした。

II-5 統計処理
各重量において記録された 2 投のうち、飛距離が長かった試行を分析対象とした。各項目の測定値は、平均値±標準偏差で示した。飛距離および、投球中の床反力、発揮パワーのそれぞれの群間の平均値の差の検定には、一元配置の分散分析を用いた。またそれぞれの測定項目間の相関関係を検討するためにピアソンの積率相関係数を算出した。統計処理には SPSS (PASW Statistics 18、エス・ピー・エス・エス社製) を使用し、いずれの検定も、有意水準を 5% とした。
MB 後方投げにおける床反力波形の代表例（経時的変化）を図 6 に表した。

図 6：ある被験者の MB 後方投げ動作中の床反力

Ⅲ-1 重量と飛距離の関係

MB 後方投げにおける飛距離の平均値と標準偏差を表 1 および図 5 に表した。飛距離は 1kg が 16.9±2.4m、2kg が 13.2±2.1m、3kg が 11.0±2.0m、4kg が 9.5±1.7m、5kg が 8.2±1.4m であった。なお全ての重量間について、有意差が認められた（p<0.05）。また飛距離と体重との間に、全ての重量間について、有意な相関関係は認められなかった（表 1）。
図5：重量と飛距離の関係

表1：飛距離と体重の関係

<table>
<thead>
<tr>
<th>変数</th>
<th>重量</th>
<th>平均±標準偏差</th>
<th>相関係数</th>
</tr>
</thead>
<tbody>
<tr>
<td>飛距離 (m)</td>
<td>1kg</td>
<td>16.9±2.4</td>
<td>-0.15</td>
</tr>
<tr>
<td></td>
<td>2kg</td>
<td>13.2±2.1</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>3kg</td>
<td>11.0±2.0</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>4kg</td>
<td>9.5±1.7</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>5kg</td>
<td>8.2±1.4</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Ⅲ-2 重量と発揮パワーの関係

Ⅲ-2-i 投球時の床反力 (N)

MB 後方投げにおけるピーク床反力の全被験者の平均値と標準偏差を算出し、表2および図7に表した。投球時のピーク床反力は1kgが673.3±131.6N、2kgが669.4±113.7N、3kgが695.0±134.6N、4kgが679.4±108.3N、5kgが700.0±135.3Nであった。なお全ての重量間について、有意差は認められなかった。また鉛直成分と推進成分の合成成分であるピーク床反力に対する推進成分の割合は1kgが10.6±4.6%、2kgが9.0
±3.7%、3kgが5.8±2.8%、4kgが9.1±3.1%、5kgが1.4±3.2%であった。
なお全ての重量間について、有意差は認められなかった。
またピーク床反力と飛距離との間に、全ての重量間について、有意な相関関係は認められなかった（表2、図8）が、ピーク床反力と体重との間には、全ての重量間について有意な相関関係が認められた（p<0.01）（表2）。

図7: 重量とピーク床反力の関係

表2：ピーク床反力と飛距離および体重との関係

<table>
<thead>
<tr>
<th>変数</th>
<th>重量</th>
<th>平均±標準偏差</th>
<th>飛距離</th>
<th>体重</th>
</tr>
</thead>
<tbody>
<tr>
<td>ピーク床反力 (N)</td>
<td>1kg</td>
<td>673.3±131.6</td>
<td>-0.07</td>
<td>0.78†</td>
</tr>
<tr>
<td></td>
<td>2kg</td>
<td>669.4±113.7</td>
<td>0.42</td>
<td>0.73†</td>
</tr>
<tr>
<td></td>
<td>3kg</td>
<td>695.0±134.6</td>
<td>0.40</td>
<td>0.83†</td>
</tr>
<tr>
<td></td>
<td>4kg</td>
<td>679.4±108.3</td>
<td>0.24</td>
<td>0.71†</td>
</tr>
<tr>
<td></td>
<td>5kg</td>
<td>700.0±135.3</td>
<td>0.09</td>
<td>0.80†</td>
</tr>
</tbody>
</table>

†: p < 0.01.
図8：飛距離とピーク床反力の関係
飛距離の値をピーク床反力の値で除し、ピーク床反力 1N 当たりの飛距離を評価した（図9）。1kgが2.60±0.63、2kgが2.00±0.37、3kgが1.62±0.37、4kgが1.42±0.31、5kgが1.21±0.29であった。なお全ての重量間について、有意差が認められた（p<0.05）。

![飛距離/ピーク床反力の関係](image)

図9：重量と飛距離/ピーク床反力の関係

3.2.2 床反力の立ち上がり速度 (N/s)

床反力の立ち上がり速度の平均値と標準偏差を算出し、図10に表した。1kgが4219.9±3118.6N/s、2kgが4105.2±2104.7N/s、3kgが4524.0±3121.4N/s、4kgが3943.1±2059.7N/s、5kgが4108.6±2084.4N/sであった。なお全ての重量間について、有意差は認められなかった。

また床反力の立ち上がり時間は、1kgが0.71±0.13s、2kgが0.69±0.11s、3kgが0.76±0.17s、4kgが0.75±0.22s、5kgが0.76±0.23sであった。なお全ての重量間について、有意差は認められなかった。
図 10：重量と床反力の立ち上がり速度の関係

Ⅲ-2-ⅲ 脚伸展パワー (W)

MB 後方投げにおける脚伸展パワーの平均値と標準偏差を算出し、表 3 および図 11 に表した。投球時の脚伸展パワーは 1kg が 825.3 ± 434.5 W、2kg が 756.4 ± 361.6 W、3kg が 927.6 ± 447.9 W、4kg が 802.2 ± 353.3 W、5kg が 912.2 ± 430.5 W であり、2kg と 3kg の間に有意な差が認められた (p=0.031) が、その他の重量間について、有意差は認められなかった。

脚伸展パワーと飛距離との間に、全ての重量間について、有意な相関関係は認められなかった（表 3、図 12）。一方、脚伸展パワーと体重との間に、3kg (p<0.05)、5kg (p<0.01) に、有意な相関関係が認められた (p<0.01)（表 3）。また脚伸展パワーとピーク床反力との間に、全ての重量間について、有意な相関関係が認められた（表 3）。

飛距離を脚伸展パワーで除した値を、図 13 に表した。1kg が 0.025±0.018、2kg が 0.021±0.011、3kg が 0.014±0.008、4kg が 0.013±0.006、
5kg が 0.011±0.007 であった。なお 1kg と 3kg (p=0.002)、1kg と 5kg (p =0.002)、2kg と 3kg (p<0.001)、2kg と 4kg (p=0.025)、2kg と 5kg (p<0.001)、3kg と 5kg (p=0.001) の間に有意な差が認められたが、その他の重量間について、有意差は認められなかった。

また転子点における速度の鉛直成分は 1kg が 1.62±0.44m/s、2kg が 1.54±0.41m/s、3kg が 1.60±0.50m/s、4kg が 1.53±0.44m/s、5kg が 1.61±0.52m/s であり、全ての重量間について、有意差は認められなかった。

図 11：重量と脚伸展パワーの関係

<table>
<thead>
<tr>
<th>変数</th>
<th>重量</th>
<th>平均±標準偏差</th>
<th>飛距離</th>
<th>相関係数</th>
<th>ピーク床反力</th>
</tr>
</thead>
<tbody>
<tr>
<td>脚伸展パワー (W)</td>
<td>1kg</td>
<td>825.3±434.5</td>
<td>-0.17</td>
<td>0.37</td>
<td>0.76†</td>
</tr>
<tr>
<td></td>
<td>2kg</td>
<td>756.4±361.6</td>
<td>0.23</td>
<td>0.30</td>
<td>0.61†</td>
</tr>
<tr>
<td></td>
<td>3kg</td>
<td>927.6±447.9</td>
<td>0.35</td>
<td>0.51 *</td>
<td>0.80†</td>
</tr>
<tr>
<td></td>
<td>4kg</td>
<td>802.2±353.3</td>
<td>0.31</td>
<td>0.30</td>
<td>0.47 *</td>
</tr>
<tr>
<td></td>
<td>5kg</td>
<td>912.2±430.5</td>
<td>0.21</td>
<td>0.57†</td>
<td>0.71†</td>
</tr>
</tbody>
</table>

*: p < 0.05.
†: p < 0.01.
図 12: 飛距離と脚伸展パワーの関係

図 13: 重量と飛距離/脚伸展パワーの関係
Ⅲ-2-ⅳ ボールに伝達された平均パワー (W)

MB 後方投げにおいてのボールに伝達された平均パワーにおける、全被験者の平均値と標準偏差を算出し、図 14 に表した。ボールに伝達されたパワーは 1kg が 369.1±182.6W、2kg が 481.1±174.6W、3kg が 567.5±190.4W、4kg が 692.6±267.4W、5kg が 765.5±262.7W であった。なお 1kg と 2kg (p=0.002)、1kg と 3kg (p<0.001)、1kg と 4kg (p<0.001)、1kg と 5kg (p<0.001)、2kg と 3kg (p=0.017)、2kg と 4kg (p=0.004)、2kg と 5kg (p<0.001)、3kg と 5kg (p<0.001) の間に有意な差が認められたが、その他の重量間について有意差は認められなかった。

ボールに伝達された平均パワーと飛距離との間に、2kg (p<0.01)、3kg (p<0.01)、4kg (p<0.05)、5kg (p<0.05) に、有意な相関関係が認められた（表 4、図 15）。一方、ボールに伝達された平均パワーと体重、ピーク床反力との間に、有意な相関関係は認められなかった（表 4）。

図 14 : 重量とボールに伝達されたパワーの平均値の関係
表4：ボールに伝達されたパワーと飛距離、体重およびピーク床反力との関係

<table>
<thead>
<tr>
<th>変数</th>
<th>重量</th>
<th>平均±標準偏差</th>
<th>飛距離</th>
<th>体重</th>
<th>ピーク床反力</th>
</tr>
</thead>
<tbody>
<tr>
<td>ボールに伝達されたパワーの平均値(W)</td>
<td>1kg</td>
<td>369.1±182.6</td>
<td>0.15</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>2kg</td>
<td>481.1±174.6</td>
<td>0.67†</td>
<td>-0.07</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>3kg</td>
<td>567.5±190.4</td>
<td>0.68†</td>
<td>-0.14</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>4kg</td>
<td>692.6±267.4</td>
<td>0.56*</td>
<td>0.09</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>5kg</td>
<td>765.5±262.7</td>
<td>0.50*</td>
<td>-0.02</td>
<td>-0.03</td>
</tr>
</tbody>
</table>

*: p < 0.05.
†: p < 0.01.

図15：飛距離とボールに伝達されたパワーの平均値の関係
MBのリリース速度及び投射高、投射角

MB後方投げにおいてのリリース速度の平均値と標準偏差を算出し、図16に表した。なお動画映像に欠落のあった10試行を除したため、N=19となった。リリース速度は1kgが14.1±3.0m/s、2kgが11.0±1.7m/s、3kgが10.3±1.4m/s、4kgが10.1±1.9m/s、5kgが9.5±1.2m/sであった。なお1kgと2kg（p=0.005）、1kgと3kg（p<0.001）、1kgと4kg（p<0.001）、1kgと5kg（p<0.001）、2kgと3kg（p=0.005）、2kgと4kg（p=0.027）、2kgと5kg（p<0.001）の間に有意な差が認められたが、その他の重量間について、有意差は認められなかった。

またリリース速度と飛距離との間に、2kg（p<0.05）、3kg（p<0.05）について、有意な相関関係が認められた（表5、図17）。しかしリリース速度と体重、ピーク床反力（図18）および脚伸展パワー（図19）との間に、全ての重量間について、有意な相関関係は認められなかった（表5）。

また身長に対する投射高の相対値は、1kgが0.97±0.06、2kgが0.97±0.07、3kgが0.99±0.05、4kgが0.98±0.06、5kgが0.96±0.06であった。なお全ての重量間について、有意差は認められなかった。リリース時の投射角は、1kgが35.1±11.1°、2kgが39.4±6.2°、3kgが41.2±9.3°、4kgが44.5±11.9°、5kgが42.2±9.7°であった。なお全ての重量間について、有意差は認められなかった。
図 16: 重量とリリース速度の関係

表 5: リリース速度と飛距離、体重、ピーク床反力および脚伸展パワーとの関係

<table>
<thead>
<tr>
<th>変数</th>
<th>重量</th>
<th>平均±標準偏差</th>
<th>飛距離</th>
<th>体重</th>
<th>ピーク床反力</th>
<th>脚伸展パワー</th>
</tr>
</thead>
<tbody>
<tr>
<td>リリース速度 (m/s)</td>
<td>1kg</td>
<td>673.3±131.6</td>
<td>0.05</td>
<td>0.21</td>
<td>0.31</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>2kg</td>
<td>669.4±113.7</td>
<td>0.65†</td>
<td>-0.15</td>
<td>0.02</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>3kg</td>
<td>695.0±134.6</td>
<td>0.70†</td>
<td>-0.03</td>
<td>0.12</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>4kg</td>
<td>679.4±108.3</td>
<td>0.39</td>
<td>0.18</td>
<td>0.21</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>5kg</td>
<td>700.0±135.3</td>
<td>0.31</td>
<td>0.04</td>
<td>0.00</td>
<td>0.17</td>
</tr>
</tbody>
</table>

†: p < 0.01.
図 17：飛距離とリリース速度の関係

図 18：ピーク床反力とリリース速度の関係
図 19：脚伸展パワーとリリース速度の関係
第Ⅳ章 考察

本研究はMB後方投げにおいて発揮されるパワーに対するMB重量の影響、およびMB後方投げにおいて発揮されるパワーと飛距離との関係を明らかにすることを目的とした。

飛距離と重量について、飛距離は全ての重量間について有意な差が認められ、重量が増すごとに飛距離が短くなった。ピーク床反力、脚伸展パワーよりは、全ての重量について、ほぼ同じ値であった。またMBのリリース速度に関しては、重量の一番軽い1kgが最も速いリリース速度であり、一番重い重量の5kgは全てのMBの中で最も遅いリリース速度であった。

Ⅳ-1 重量と発揮パワーの関係

一般的にレジスタンスエクササイズにおいて、負荷重量が増していくと、最大挙上重量の約80%までは、人体が発揮するパワーは上昇していく17) 32) 46)。同様にMB後方投げにおいても、重量が増すごとに、人体が発揮するパワーも増していくと予測された。またトレーニングを行う上で適切な至適重量があるとすれば、一般的に使用されている1～5kg重量の中で、脚伸展パワーが最大になる重量があると推察された。しかし脚伸展パワーにおいて、本研究で用いた重量の範囲で、極大値を得る結果には至らなかった。

身體が発揮する力の変化により、力を加える対象物の速度に変化をもたらす。したがって、リリース速度の大小を決定している因子の一つは、身体が発揮する力である。また身体が発揮する力に、力を発揮する身体の速度を積したものが、身体が発揮するパワーである。従って、身体が発揮するパワーもリリース速度の大小を決定している因子の一つと言う
ことが出来る。

しかし、本研究で測定を行った脚伸展パワーは、2kgと3kgの間に有意な差が認められたが、その他の重量間では有意な差を認めなかった。

投球時におけるピーク床反力は、全ての重量間について有意差は認められなかった。また床反力の立ち上がり速度、立ち上がり時間においても有意差は認められなかった。つまり、投球動作中の床反力の経時的変化については、重量および被験者に関わらず、ほとんど同じ様相を呈していた。そして脚伸展速度の指標とした、転子点における速度の鉛直成分に関しても、全ての重量間について、有意な差は認められなかった。

以上のように、床反力と脚伸展速度は全ての重量間についてほぼ同じであり、それの積である脚伸展パワーにおいても2kgと3kgの間以外には有意な差は認められなかった。

本研究における脚伸展パワーは、先行研究と同様に垂直跳びと比較を行うため、鉛直成分のみを分析対象としている。しかし床反力に関しては、図6に代表されるように、全ての重量において、推進成分に対して、鉛直成分がより大きな値を示している。従って、鉛直方向の脚伸展パワーは、下半身が発揮しているパワーに対して大きな割合を占めていると推測することが出来る。また脚伸展パワーは、転子点における速度の鉛直成分に、床反力の鉛直成分を積した値である。鉛直方向のパワー発揮指標として算出したが、本手法では、足関節、膝関節が発揮するパワーは含まれているものの、股関節が発揮するパワーが全て含まれていると言いかねない。

またピーク床反力、脚伸展パワーについては、全ての重量について、ほぼ同じ値であったにも拘らず、ボールに伝えられた平均パワーは、重量が増すごとに大きくなった（図14）ことから、本研究で測定対象とし
なかった、上半身が発揮するパワー、もしくは股関節が発揮するパワーの方か、飛距離により強く影響していることが考えられる。これはリリース速度と、ピーク床反力あるいは脚伸展パワーとの間に、いずれの重量間についても、有意な相関関係が認められなかったことからも推察することが出来る。

上半身が発揮するパワーは、体幹、肩関節、肘関節、手関節が発揮するパワーを総合したものであり、6つの身体セグメントから成る下肢と比べ、上半身は9つという多くのセグメントから構成されており、これらのセグメント間に発生し、総合されたパワーが飛距離を決定していると考えられる。

また飛距離を決定する上半身が発揮するパワーの強弱に、影響を及ぼす因子の1つとして挙げることが出来るのが、投擲テクニックである。

一般に飛距離を決定する要因はリリース速度、投射高、投射角とされている。本研究では投射高、投射角について、全ての重量間に有意な差が認められなかったが、投射高に対して適切な投射角で、投擲を行うことは、より遠くへ投げることを目的としたトレーニングにおいて重要である。従って、MB後方投げは技術的要素が強いというトレーニング指導者の意見が在るのも、このような上半身のパワー発揮の難しさ、投擲テクニックが原因の一つと言えるかもしれない。

このように、MB後方投げ動作はピーク床反力ならびに脚伸展パワーは、全ての重量について、有意な差は認められず、上半身が発揮するパワーの方が、飛距離により強く影響していることが考えられた。つまり、脚を重視した競技種目においては、MB後方投げを下肢のトレーニングとして、もしくは測定評価として使用することは有効でないことが推察される。
IV-2 発揮パワーと飛距離の関係

スポーツ活動、トレーニング現場では、MB後方投げにおける飛距離が、パフォーマンス評価の指標として認識され扱われている。これはStockbruggerらが評価を行ったPower Index53,54であったり、Mayhewらが評価を行ったピークパワー、平均パワー41のように、パワーを評価する指標が、MB後方投げの最大飛距離と強い相関関係を示した先行研究の結果に依るところが大きい。

しかし本研究では、MB後方投げ動作中の脚伸展パワーと飛距離に有意な相関関係は認められなかった（表3、図12）。しかし被験者の体重とそれぞれが評価を行ったパワーとの関係では、Mayhewら41はピークパワー、平均パワーは各々相関関係を示し（$r=0.36, r=0.29$）、Stockbruggerら54も相関関係を示している（$r=0.79$）と同様に、本研究でも、被験者の体重とMB後方投げ動作中の脚伸展パワーの間に有意な相関関係が認められた。

本研究では身体全体が発揮するパワーではなく、脚伸展パワーという局所的なパワーを評価したことが最大の理由であると考えられる。脚伸展パワーは、飛距離と有意な相関関係が認められなかった一方で、飛距離を決定する因子の1つである、リリース速度では2kg、3kgにおいては、飛距離と有意な相関関係が認められた。この変数は、本研究で得られたデータの中で唯一、飛距離と有意な相関関係が認められた。先行研究と同じ結果が得られた理由として、リリース速度はMBが単独で運動を開始する際の1つの変数であるということ、身体全体が発揮するパワーの大小に依存することが挙げられる。またStockbruggerら53,54が同様に3kgのMBを使用して研究を行っていることが挙げられる。（Mayhewら41は7kgのMBを使用している。）
ピーク床反力および脚伸展パワーが飛距離と有意な相関関係が認められなかったことから、強く地面を押せば押すほど、遠くに投げられるという結果にはならなかった。しかし同じ床反力であれば、最も影響を受けるのは 1kg であり(図 9)、リリース速度においても一番速かったのが 1kg であった。効率という面では、1kg を選択することがトレーニングに適していると示唆される(図 9、13)。

また本研究で測定を行ったボールに伝達された平均パワー、脚伸展パワーおよびピーク床反力の値において、本研究で用いた重量の範囲では、極大値を得られなかった。これより一般的に使用されている 1〜5kg の MB の中では、どの重量がトレーニングの至適重量なのか、本研究で言及するには至らなかった。

IV-3 MB 後方投げの特徴的傾向（床反力の様相）

投球動作中の床反力には、特徴的な傾向がみられた。投球動作開始後になしゃがみ込み、その後投球に至るまでに床反力に 2 つの凸形状がみられた(図 6)。5 つの投球の中で 1 つでも 2 つの凸形状を示した者は、20人中 18 人を占めた。また 5 回全ての投球において 2 つの凸形状を示した者は、15 人いた。これはスナッチ、クリーン種目における、重量を挙上する際に一度膝を後方へ引き、その後下肢 3 関節を伸展させる「ダブルーペンド」動作(6) (9) (15) (19) (21) (27)に類似している。挙上重量はスナッチ、クリーン種目と異なるものの、床に近い、低い位置から、最大努力で脚伸展を行うという点でも同じような動作を行うトレーニング種目であることが分かる。熟練したエクササイズテクニックが必要とされるスナッチ、クリーン種目と異なり、挙上重量が軽くなるものの、同じような床反力の様相を呈している MB 後方投げは、クリーン、スナッチ種目の
導入種目として、レジスタンストレーニングプログラムに導入することも方法の1つであろう。
第Ⅴ章 結論

本研究はMB後方投げにおいて発揮されるパワーに対するMB重量の影響、およびMB後方投げにおいて発揮されるパワーと飛距離との関係を明らかにすることを目的とした。

その結果、投球時における脚伸展パワーはほぼ同じであり、またボールに伝達された平均パワー、脚伸展パワーおよびピーク床反力の値において、本研究で用いた重量の範囲では、極大値を得られなかった。これより一般的に使用されている1〜5kgのMBの中では、どの重量がトレーニングの至適重量なのか、本研究で言及するには至らなかった。
第Ⅵ章 参考文献

4) 浅見俊雄. 現代の科学・スポーツ科学 スポーツトレーニング. 東京: 朝倉書店. 75 1985.

and Conditioning Research. 10(2): 72-76. 1996.

33) 窪康之，阿江通良，藤井範久. 技術トレーニングによる動作の変化に関するバイオメカニクス的研究-メディシンボールのバック投げにおける力学的エネルギーの流れに着目して-. バイオメカニクス研究. 3(3). 170-178. 1999-10.

48) 岡田英考, 阿江通良, 藤井範久, 森丘保典. 日本人高齢者の身体部分慣性特性. バイオメカニズム学会. 東京大学出版会. 125-128. 1996.

謝辞

本研究は、主査岡田純一准教授、副査川上泰雄教授、副査磯繁雄教授のもと行われました。岡田純一准教授には、実験計画から文章構成に至るまで、丁寧な指導をして頂きました。また杉崎範英助教には、いつも多くの助言を頂きました。諸先生方に深く感謝いたします。

また快く実験の被験者を引き受けて頂いた皆様、多大なご協力を頂いたコーチング科学研究領域の皆様に、心より厚く御礼申しあげます。
最後に、応援してくれた家族に感謝いたします。

2012年1月13日

早稲田大学スポーツ科学研究科 荒井 進之介