Bio-Robotics and Human-Mechatronics Laboratory

Takafumi Matsumaru
Bio-Robotics & Human-Mechatronics Lab.
Graduate School of Information, Production and Systems, Waseda University
http://www.waseda.jp/sem-matsumaru/

04 April, 2011.

Bio-Robotics and Human-Mechatronics Laboratory

- Various themes between human and robot
- To make mechanical artificial systems more friendly / useful for users
- Developing new functions, producing real-world systems
- Applying various knowledge and technologies, as a system integrator

Better interaction / relationship between human and robot

Biographical Information

- 1985 B.S., Mechanical Engineering, Waseda University
 Development of articulated manipulator aiming at force control (Supervised by late Prof. I.Kato)
- 1987 M.S., Mechanical Engineering, Waseda University
 Basic theory on multi-dof compliance control on articulated manipulator (Supervised by late Prof. I.Kato)
- 1987–1999 R&D center, Toshiba Corporation
 Research on robots for specialized operations
 Development of mechatronic systems using robotic tech
- 1995 Ph.D., Mechanical Engineering, Waseda University
 "Research on structure and control of working robot in a little space" (Supervised by Prof. S.Sugano)
- 1999–2010 Associated Professor, Shizuoka University
 Education and Research on Bio-Robotics and Human-Mechatronics
 Invited Professor (2003), LSC (Laboratoire Systemes Complexes) – CNRS, Evry France.
 Visiting Fellow (2002), Shizuoka Industrial Research Institute, Japan
 2010– Professor, Waseda University
 Research and Education on Bio-Robotics and Human-Mechatronics

Bi-Robotics & Human-Mechatronics Laboratory

- Remote Operation System of Mobile Robot
 Combination Control of Manual and Autonomous
 Environmental Map around Remote Robot: Line method / Cell method
 Operational Interface: JS, Pupil mouse, HMD + gaze track, Voice, Touch display
- Pre-Announcement of Robot’s Intention
 Method and Apparatus to Display Direction and Speed: 4 kinds / 2 types
 Experiment in Simulated Interactive Situation: Human-Robot Motion Capture
 Comparing Display Announcement with Voice Announcement
- Form / Movement of Human-Synergetic Robot
 Emotional Motion: Four Basic Emotions on Teddy Bear Robot
 Informative Motion: Hand-over and Throw-over for Humanoid Robot
- Interaction with Human-Symbiotic Robot
 Step-On Interface (SOI) and Friendly Amusing Mobile (FAM) Function
 Application: Playing “Light” Tag – stepping animal tail / bomb fuse / footmark
Interaction problem

- Lack of shared knowledge / common sense
 - Human beings
 - Interact, signaling own and predicting others’ action / intention
 - Non-verbally through body language, hand gestures, facial expressions, and whole body operations
 - Acquire social and physical skills that make movement practically second nature based on sense of affinity, familiarity, and common appearance – sharing "common sense"
 - Robots
 - Cause disaffinity, unfamiliarity, and uncommon appearance – no sharing of common sense that make robot movement predictable to people
 - Avoid risk of contact and collision
- Function to preliminary-announce robot’s intention
 - Mobile robots or transport vehicles – speed / direction

Prototype Robot

- State of operation just after the present
 - Lamp
 - PMR-2R
 - Blowout
 - PMR-6R
- Operations from present to some future
 - Light ray
 - PMR-1R
 - Projection
 - PMR-5R

PMR-2R: Omni-directional Display

- "Eyeball" (gaze)
 - Friendly, familiarity
 - Operation at 1.5s-later
 - Speed – degree of eye opening
 - Direction – eye positioning

PMR-6R: Flat-panel Display

- "Arrow"
 - Commonly used, comprehensible
 - Operation at 1.5s-later
 - Speed – size / color of arrow
 - Direction – curved condition

PMR-1R: Laser Pointer

- "Scheduled route"
 - Afterimage of radiant
 - Route until 1.5s-later
 - Speed – length of route
 - Direction – direction of route

PMR-5R: Projector

- "Occupied area"
 - Color-coded / striped belt
 - Area until 1.5s-later
 - Speed – length of belt
 - Direction – curved belt
Step-On Interface (SOI)

- **SOI (Step-On Interface)**
 - Projected screen is used as a bilateral interface
 - Not only presents some information
 - But also delivers instructions
 - Projector displays a direction screen on a surface
 - 2-D Range scanner detects and measures the user's stepping to specify the selected button

- **Features:**
 - Hands-free – elderly, physically challenged, and users whose hands are full
 - Anywhere without disturbing others and in noisy environment
 - No special devices are needed – user's own foot or stick (cane)
 - Requires little preliminary preparation or special setup
 - Can use figures / pictures in addition to letters – language-independent, possible for beginners and non-native speakers
 - Functions are easy to design, setup and change in software

Human-Friendly Amusing Mobile Robot (HFAMRO-1)

- **Omni-dir. mobile platform**
 - Omni-wheel (4)
 - HD-geared DC-motor (4)

- **Step-On Interface (SOI)**
 - **Projector**
 - Min. distance: 1200mm
 - Screen size: W730–D550mm (36°)
 - **Mirror**
 - W225–D125 mm
 - **Range scanner**
 - Area: 2460deg / 682step (0.35deg/step)
 - Distance: 20–4095mm
 - PC acquires data every 100ms

Basic movement from both sides

Functional Amusing Mobile (FAM) function

- **FAM (Friendly Amusing Mobile)**
 - Robots interact with users
 - **Play ‘tag’**
 - Play tag, with “light”, similar to ‘shadow’ tag
 - User pursues robot and steps on button on screen
 - Robot responds by playing game, providing with information, moving to indicate ‘emotion’, etc.
 - **Game: step on animal's tail**
 - **Scenario**
 - Animal’s head and tail are displayed
 - Moves characteristically, cocking head and wagging tail
 - Stop, cry out, and show anger, when caught up / stopped
 - **Technical aspect**
 - Self-contained mobile robot, independent without movement restriction
 - Playing tag with “light” function
Human-Friendly Amusing Mobile Robot HFAMRO-2

- Two-wheel drive mobile platform
 - D200-wheel (2), DC-motor (2)
- Step-On Interface (SOI)
 - Projector
 - Min. distance: 560mm
 - Screen size: W850×H640mm
 - Range scanner
 - Area: 240deg / 682step (0.35deg/step)
 - Distance: 20–5695mm
 - PC acquires data every 100ms
- Power source
 - Battery (mobile platform / SOIs)
 - External AC100V cable

Demonstration video

- Applications
 - Stepping animal tail
 - Stamping bomb fuse
 - Stepping footprint

Stepping animal tail: Dog (fast)

Animal selection
- Dog / Cat / Pig
Start moving
- Cocking head
- Wagging tail
- Panting
Catch up with / step on tail
- Stop immediately
- Anger expression
Removed
- Start again
Kept for a while
Get away
- Call for
- Get away
- Call for
- Come close

Stepping footprint

Make user
- Strong desire to commit rehabilitation of walking
Initial screen
- Two marks of both feet
Session starts
- User puts foot
- Makes sound, move forward, display mark
Sequential presentation
- User puts foot
- Makes sound, move forward, display the other
- Gotten away
- Sound to call for

Stamping bomb fuse: failure

Fuse
- Spark at end
- Swinging
User
- Stamp on spark
Moves
- Playing
- Background music
- Showing time left / remaining num. to stamp
- Crash sound
- User hits spark
As time passes
- Moves faster
- Pick up tempo

Bio-Robotics & Human-Mechatronics Laboratory

Message
- Let’s grow up together developing a new field as the meeting ground for people who have a new way of thinking and extraordinary abilities regardless of present areas and aspects.