Adaptive-Partial Template Update with Center-Shifting Recovery for High Frame Rate and Ultra-Low Delay Deformation Matching System

Background
- Human-machine interaction
 - Projection mapping
 - Gesture recognition
 - Automatic driving
 - AR clothing system

Target
- FPGA implementation of high frame rate and ultra-low delay deformation matching system

Challenges
- Ensure ultra-low delay
- Improve robustness to Template-drift & Template-loss

Proposals

Proposal 1: Partial update with new keypoint addition
- Input pixel flow
- Pixel descriptor
- Template matching
- Matched keypoint addition
- New template descriptor

Proposal 2: Flexible ROI with hamming threshold descent
- Matched keypoints
- Boundary points
- Polygonal boundary
- New template ROI
- Inner region -> Higher h_t -> Easier to be matched
- Outer region -> Lower h_t -> Harder to be matched

Proposal 3: Center-shifting recovery with region check
- Multiple pixel-wise differences (d_{pixel})
- Previous ROI
- Invalid ROI (lost)
- Recovered ROI

Evaluation results
- Matching accuracy
 - Average F-score: 71.01%
 - Solve problems in most cases

Conclusion
- Achieve deformation matching system (784fps, 640*480) with ultra-low delay (0.808ms/frame)

Hardware performance

<table>
<thead>
<tr>
<th>Resource</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td># LUT</td>
<td>101233 (49.67%)</td>
</tr>
<tr>
<td># Flip Flop</td>
<td>112198 (27.53%)</td>
</tr>
<tr>
<td># BRAM</td>
<td>28.50 (6.40%)</td>
</tr>
<tr>
<td># DSP</td>
<td>36 (4.29%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input frame rate</th>
<th>Processing delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>784 fps</td>
<td>0.808 ms/frame</td>
</tr>
</tbody>
</table>