End-to-end CNN with Selective Kernel Based Fusion and Inverse Tone-mapping Based Up-sampling for High-resolution HDR Imaging of Dynamic Scenes

Background

Ghost problem of HDR reconstruction

![Dynamic LDR Images](image1.png) ![Result with ghost](image2.png)

Problem

1. Information Loss and extra time cost by pre-alignment
2. Information utilization unbalance in motion areas
3. Ghost-like artifacts in the guide image generation

Solution

- Proposal 1: Selective kernel based attention guided fusion network
- Proposal 2: Motion-emphasized loss function
- Proposal 3: Inverse tone-mapping guided up-sampling network

Proposals

Basic framework:

1. Selective kernel based attention guided fusion network
2. Motion-emphasized Loss Function
3. Inverse tone-mapping guided up-sampling network

Experiment result

<table>
<thead>
<tr>
<th></th>
<th>Sen12</th>
<th>Kalantari17</th>
<th>Wu18</th>
<th>Yan19</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSNR(T)</td>
<td>40.9545</td>
<td>42.7423</td>
<td>41.7403</td>
<td>42.9167</td>
<td>43.1733</td>
</tr>
<tr>
<td>PSNR(L)</td>
<td>38.3156</td>
<td>41.2158</td>
<td>40.8739</td>
<td>40.1648</td>
<td>40.8990</td>
</tr>
<tr>
<td>HDR-VDP-2</td>
<td>56.8968</td>
<td>60.5088</td>
<td>60.5006</td>
<td>60.8320</td>
<td>61.0222</td>
</tr>
</tbody>
</table>

Conclusion

The proposed method scores 43.17 with PSNR metric and 61.02 with HDR-VDP-2 metric on test which outperforms all conventional works.

And with an up-sampling module, the proposed network produces HDR at an 80% time off with quality degradation from 43.17 to 38.16 in PSNR.

Graduate School of Information, Production and Systems
Waseda University