A Robust Real-time Object Tracking using SIFT Features

Research Contents

- **Background**
 - Automated surveillance
 - Video indexing
 - Vehicle Monitoring
 - Human-computer interaction

- **Introduction of SIFT**
 - Difference of Gaussian Pyramid (Scaling)
 - Extrema Detection
 - Orientation Assignment (Rotation)
 - Descriptor Computation (Viewpoint / Illumination)

- **Proposals for Reducing Time in Tracking**
 - Use Homograph Matrix to locate ROI
 - Use 20 keypoints to describe an object
 - No descriptor part for other keypoints

- **Targets**
 - **Object trackers using SIFT features**
 | Rigid object | Non-rigid object |
 | Traditional Tracker | Target 1 | Target 2 | Future work |
 - **Target2: Robust Non-rigid Object Tracking**
 - **Performance**
 - Complex object motion
 - Non-rigid or articulated nature of objects
 - Partial and full object occlusions

- **Overall tracking procedure in each frame**
 - Feature points detection and matching
 - Object locating
 - Homography matrix
 - SIFT algorithm
 - to next frame

- **Experimental Results**
 - **Experimental Results**
 - **Test sequences**
 - # of frames
 - Size
 - Frame rate (fps)
 - Average error (pixels)
 - **Complex motion**
 - Mean shift: 434 frames, 320*240 size, Mean shift 40.8 frames, 8.2
 - Proposed: 4.2 frames, 7.6
 - **Occlusion by branches**
 - Mean shift: 488 frames, 320*240 size, Mean shift 43.2 frames, 36.0
 - Proposed: 13.8 frames, 8.0
 - **Occlusion by pillar**
 - Mean shift: 298 frames, 320*240 size, Mean shift 37.2 frames, 18.7
 - Proposed: 11.4 frames, 8.3

- **Tracking result examples of “Occlusion by pillar”**
 - Mean shift
 - SIFT
 - Proposed