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Abstract

We introduce a new axiom, the balanced contributions property for equal contrib-
utors. This axiom is defined by restricting the requirement of the balanced contri-
butions property (Myerson (1980)) to two players whose contributions to the grand
coalition are the same. We prove that this axiom, together with efficiency and weak
covariance, characterizes a new class of solutions, the r-egalitarian Shapley values.
This class subsumes many variants of the Shapley value, e.g., the egalitarian Shapley
values or the discounted Shapley values. Our characterization uncovers a common
property for many variants of the Shapley value, as well as provides a new method
for characterizing them. Based on our new axiom, we also provide a non-cooperative
implementation of the r-egalitarian Shapley values. Our new mechanism clarifies the
difference among variants of the Shapley value from the bargaining power of players
affected by the cost of continuing a bargaining.

Keywords: TU games, Balanced contributions property, Shapley value,
Axiomatization, Implementation
JEL classification: C71, C72

1. Introduction

Since the pioneering work by Shapley (1953), the analysis of solutions in the
cooperative game theory has made a considerable progress. Shapley proved that
his new solution, the Shapley value, is the unique solution satisfying the following
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four axioms: efficiency, symmetry, the null player property and additivity. Later on,
researchers pointed out the limitation of some of his axioms, and replaced them with
alternative axioms. This approach has developed new variants of the Shapley value.

In the literature, different variants of the Shapley value are typically discussed
separately. In this study, on the other hand, we introduce a new class of solutions
that subsumes many variants of the Shapley value. By providing a new axiomatiza-
tion and a non-cooperative implementation of the class of solutions, we discuss the
difference among variants in a unified manner.

The key step of our analysis is to introduce a weakening of the balanced contribu-
tions property by Myerson (1980). This axiom states that for any game and any two
players i and j, the effect of player i leaving the game on the payoff of j is the same
as the effect of player j leaving the game on the payoff of i.1 Our main finding is
that, by relaxing the condition “for any two players”, we can discuss more equitable
solutions, e.g., the equal division value, in a similar manner. Our new weaker axiom,
the balanced contributions property for equal contributors, restricts the requirement
of the balanced contributions property to two players whose contributions to the
grand coalition are the same.

We prove that our new axiom and two standard axioms characterize the class
of r-egalitarian Shapley values. An r-egalitarian Shapley value is parameterized by
an infinite sequence of real numbers r. The class of the solutions has the advan-
tage of subsuming many variants of the Shapley value, e.g., the egalitarian Shapley
values (Joosten (1996), van den Brink et al. (2013)), the discounted Shapley val-
ues (Joosten (1996), van den Brink and Funaki (2015)) or the generalized solidarity
values (Casajus and Huettner (2014a)).

We point out two contributions of our characterization. First, we uncovered a
common property for many variants of the Shapley value. This is a notable result
in light of the fact that each variant is derived from a different perspective. Second,
our new axiom offers a new method for characterizing variants of the Shapley value.
This is comparable to previous studies where variants of the Shapley value have been
characterized by replacing the null player property in Shapley’s (1953) axiomatization
(see van den Brink and Funaki (2015)), or by weakening strong monotonicity in
Young’s (1985) axiomatization (see van den Brink et al. (2013), Casajus and Huettner
(2014b) or Yokote and Funaki (2015)).

There is a line of literature on the balanced contributions property. A weak-
ening of the property (Kamijo and Kongo (2010)), the weighted version (Hart and
Mas-Colell (1989), Calvo and Santos (2000)), a parallel property with respect to

1We follow the explanation of the property by van den Brink and Chun (2012).
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players nullification (Gómez-Rúa and Vidal-Puga (2010), Béal et al. (2016)), gener-
alizations to games with coalition/levels structures (Calvo et al. (1996), Vidal-Puga
and Bergantiños (1996), Gómez-Rúa and Vidal-Puga (2011), Kamijo (2013)) and an
extension to NTU games (Hart and Mas-Colell (1996)) have been introduced. The
basic idea of the property has been applied to several allocation problems, e.g., the
exchange economies (Gudiño (2015)), the discrete cost allocation problems (Calvo
and Santos (2006)), the sequencing problems (van den Brink and Chun (2012)), and
the bankruptcy problems (Hwang (2015)). To the best of our knowledge, this study
is the first to argue that the balanced contributions property can be used to discuss
equitable solutions.

Based on our new axiom, we also provide a non-cooperative implementation of
the r-egalitarian Shapley values. More specifically, we modify Pérez-Castrillo and
Wettstein’s (2001) bidding mechanism by introducing the cost of proceeding to the
next round. The cost affects the bargaining power of players, which causes them
to behave in a different way. We prove that, when the cost is parametrized by an
exogenously given sequence r, the r-egalitarian Shapley value is implemented.

The reminder of the paper is organized as follows. Section 2 introduces basic con-
cepts and our new axiom, the balanced contributions property for equal contributors.
In Section 3, we define and characterize the class of r-egalitarian Shapley values. Sec-
tion 4 introduces a new bidding mechanism and implements the r-egalitarian Shapley
values. Section 5 concludes this paper. All proofs are provided in Section 6.

2. The balanced contributions property for equal contributors

We first introduce basic concepts.2 Let R denote the set of real numbers, and N
the set of natural numbers, with the convention that 0 /∈ N. Fix a countable infinite
set U ,3 the universe of players, and let N denote the set of non-empty and finite
subsets of U . For S ∈ N , let |S| denote the cardinality of S. For S,N ∈ N , let s
and n denote |S| and |N |, respectively. A (TU)-game is a pair (N, v) consisting of a
set of players N ∈ N and a coalition function v ∈ V(N) := {f : 2N → R : f(∅) = 0}.
Let Γ denote the set of all games. For (N, v) ∈ Γ and S ⊆ N , S ̸= ∅, with a slight
abuse of notation, let (S, v) denote the game in which the domain of v is restricted
from 2N to 2S.

Given that the grand coalition forms, we investigate the problem of how to fairly
divide the total payoff among players. A solution is a function ψ that assigns a payoff

2We follow notations of Casajus and Huettner (2014a).
3All the theorems in this paper remain valid even if we assume that U is finite.
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vector ψ(N, v) ∈ RN to each game (N, v) ∈ Γ. We introduce two basic solutions.
The Shapley value (Shapley (1953)) is given by4

Shi(N, v) =
∑

S⊆N\i

pn,s
[
v(S ∪ i)− v(S)

]
for all (N, v) ∈ Γ, i ∈ N,

where

pn,s =
s!(n− s− 1)!

n!
.

The equal division value is given by

EDi(N, v) =
v(N)

n
for all (N, v) ∈ Γ, i ∈ N.

An axiom is a requirement for solutions, and is intended to capture our idea of
desirability of solutions like equity or fairness. We first introduce a fundamental
axiom in the context of dividing the total payoff v(N).

Efficiency, E
∑

i∈N ψi(N, v) = v(N) for all (N, v) ∈ Γ.

The following axiom introduced by Myerson (1980) is a widely-used fairness criterion
in cooperative games:

Balanced contributions property, BC For any (N, v) ∈ Γ with n ≥ 2 and i, j ∈
N , i ̸= j,

ψi(N, v)− ψi(N\j, v) = ψj(N, v)− ψj(N\i, v). (1)

This axiom states that the effect of player i leaving the game on the payoff of j is
the same as the effect of player j leaving the game on the payoff of i.

The balanced contributions property has been intensively discussed in the litera-
ture. This axiom, however, is flawed by its too strong requirement. Under efficiency,
the only solution satisfying the balanced contributions property is the Shapley value.
The Shapley value determines final payoffs only by the contributions of players, and
does not allow for egalitarian principles or solidarity among players.

The main objective of this study is to modify the axiom in such a way that more
equitable solutions can be discussed. To this end, we focus on the equal division

4We denote a singleton set {i} simply by i.
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value, which is a reference point of equitable solutions. To see why the equal division
value violates BC, consider a game (N, v) ∈ Γ such that v(N\i) ̸= v(N\j) for some
i, j ∈ N . Then, ψi(N, v) = ψj(N, v), while ψi(N\j, v) ̸= ψj(N\i, v), violating (1).

The above discussion points out a limitation of the balanced contributions prop-
erty, but at the same time, suggests a direction for modifying the axiom. Let us
consider a weakening of BC in which we require (1) only for two players i, j ∈ N who
satisfy v(N\i) = v(N\j). This seems to be a right direction for accommodating more
equitable solutions, because at least the equal division value satisfies it. Moreover,
the new axiom can be naturally interpreted as follows: if the total payoff changes
by the same amount, i.e., v(N) − v(N\i) = v(N) − v(N\j), then their payoffs also
change by the same amount, i.e., (1) holds.

Balanced contributions property for equal contributors, BCEC Let (N, v) ∈
Γ and i, j ∈ N , i ̸= j. If v(N\i) = v(N\j), then

ψi(N, v)− ψi(N\j, v) = ψj(N, v)− ψj(N\i, v).

Here, “equal contributors” refers to the fact that the two players’ contributions to
the grand coalition are the same. BCEC is a substantial weakening of BC, and many
efficient solutions satisfy it. For the sake of characterizing solutions, we introduce
additional axioms.

For N ∈ N and i ∈ N , we define ui ∈ V(N) by ui(T ) = 1 if i ∈ T and
0 otherwise. For (N, v) ∈ Γ, i ∈ N and λ ∈ R, we define v + λui ∈ V(N) by
(v + λui)(S) = v(S) + λui(S) for all S ⊆ N , S ̸= ∅. We intend to capture the
situation in which the worth of coalitions including i increases by λ.

The following is a standard axiom in the literature:

Covariance, COV For any (N, v) ∈ Γ, i ∈ N and λ ∈ R, ψi(N, v + λui) =
ψi(N, v) + λ and ψj(N, v + λui) = ψj(N, v) for all j ̸= i.

One can check that the Shapley value satisfies this axiom, while the equal division
value does not. Hence, we consider the following weakening:

Weak covariance, COV− For any (N, v) ∈ Γ, i ∈ N and λ ∈ R, ψ(N, v + λui) =
ψ(N, v) + λψ(N, ui).

This axiom states that ψ is linear with respect to the addition of ui.
Up to this point, we focused on axioms satisfied by the Shapley value and modified

them so that the equal division value satisfies them. The two solutions satisfy E,
BCEC and COV−, but they are not the only solutions satisfying the axioms. In the
next section, we identify the boundary of solutions satisfying the three axioms by
providing an axiomatization.
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3. The r-egalitarian Shapley value and its axiomatization

We first introduce the idea of rescaling the worth of coalitions. Let S denote the
set of infinite sequences of real numbers, i.e.,

S =
{
{rk}∞k=1 : rk ∈ R for all k = 1, 2, · · ·

}
.

For r ∈ S and (N, v) ∈ Γ, we define vr ∈ V(N) by

vr(S) = rsv(S) for all S ⊆ N,S ̸= ∅.

In the game vr, we “rescale” the worth of each coalition by multiplying the r-th entry
of the sequence r, where s is the size of coalition S. This kind of rescaling is often
discussed in the context of the per-capita measure or discounting. We interpret vr

as generalizing these ideas by allowing for any sequence of real numbers.
We define the r-egalitarian Shapley value EShr by

EShri (N, v) =
v(N)− vr(N)

n
+ Shi(N, v

r) for all (N, v) ∈ Γ, i ∈ N. (2)

The interpretation of this solution is as follows. Given a sequence r, we first rescale
the worth of coalitions and construct an imaginary game vr. Then, we apply the
Shapley value to the game vr. By efficiency of the Shapley value, the payoff vector
obtain by this procedure sums up to vr(N) = rnv(N), which is different from the
total payoff v(N) whenever rn ̸= 1. To fill in the gap between the two, we equally
divide the difference v(N)− vr(N) among players.

We remark that when rn ̸= 0, EShr can be written in the form of a convex
combination:

EShri (N, v) = (1− rn) · EDi(N, v) + rn · Shi
(
N,

vr

rn

)
for all (N, v) ∈ Γ, i ∈ N,

where
vr

rn
∈ V(N) is defined by

vr

rn
(S) =

1

rn
· vr(S) for all S ⊆ N,S ̸= ∅.

In particular, we can see the inclusion of two “polar” solutions, the Shapley value
and the equal division value.

The class of r-egalitarian Shapley values has the advantage of subsuming many
variants of the Shapley value. First, the α-egalitarian Shapley value (Joosten (1996),
van den Brink et al. (2013)) is an r-egalitarian Shapley value with the sequence
rk = α for all k = 1, 2, · · · . Second, the δ-discounted Shapley value (Joosten (1996),
van den Brink and Funaki (2015)) is also an r-egalitarian Shapley value in a sense.
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To see this point, let δ ∈ [0, 1] and m ∈ N, and consider a sequence r ∈ S such
that rk = δm−k for all k = 1, 2, · · · ,m. Then, for any (N, v) ∈ Γ with n = m,
EShr(N, v) coincides with the δ-discounted Shapley value of (N, v). Moreover, for
any ξ ∈ [0, 1], the ξ-generalized solidarity value (Casajus and Huettner (2014a)) is
also an r-egalitarian Shapley value with the sequence

rk = 1− k · ξ
(k − 1) · ξ + 1

for all k = 1, 2, · · · .

As proven by Casajus and Huettner (2014a), ξ = 1
2
corresponds to the solidarity

value (Nowak and Radzik (1994)).
We now show that the class of r-egalitarian Shapley values is characterized by

the axioms discussed in Section 2.

Theorem 1. A solution ψ satisfies E, COV− and BCEC if and only if there exists
r ∈ S such that ψ = EShr.

Proof. See Subsection 6.2.

In Theorem 1, we allow for any sequence of real numbers. On the other hand,
all the variants of the Shapley value mentioned above satisfy rk ∈ [0, 1] for all k =
1, 2, · · · . This restriction is also consistent with the idea of generalizing the per-
capita measure or discounting. Hence, it is worthwhile to characterize the class of
r-egalitarian Shapley values satisfying rk ∈ [0, 1] for all k = 1, 2, · · · .

We introduce some notations and axioms. We say that a game (N, v) ∈ Γ is
monotonic if v(S) ≥ v(T ) for all S, T ⊆ N with S ⊇ T . This means that if a coalition
weakly increases (in the sense of set inclusion), then the worth of the coalition weakly
increases. In a monotonic game, we can say that all players are not non-productive.

Desirability, D For any (N, v) ∈ Γ and i, j ∈ N such that v(S ∪ i) − v(S) ≥
v(S ∪ j)− v(S) for all S ⊆ N\{i, j}, ψi(N, v) ≥ ψj(N, v).

Positivity, P For any (N, v) ∈ Γ and i ∈ N such that (N, v) is monotonic, ψi(N, v) ≥
0.

The desirability axiom states that if i’s contributions are greater than or equal to j’s
contributions, then i should receive at least j’s payoff. The positivity axiom states
that if all players are not non-productive, then no one should end up with negative
payoff.

Corollary 1. A solution ψ satisfies E, COV−, BCEC, D and P if and only if there
exists r ∈ S with rk ∈ [0, 1] for all k ∈ N such that ψ = EShr.
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Proof. See Subsection 6.3.

We point out two contributions of our characterization. First, Theorem 1 in-
dicates that many variants of the Shapley value satisfy in common the balanced
contributions property for equal contributors. This is a notable result in light of the
fact that each variant of the Shapley value is derived from a different perspective.
Second, Theorem 1 offers a new method for characterizing specific variants of the
Shapley value. We can characterize specific variants by introducing additional ax-
ioms in such a way that only the corresponding sequences survive. For example, if
we replace COV− with COV, then only the sequence corresponding to the Shaspley
value survives.

Corollary 2. A solution ψ satisfies E, COV and BCEC if and only if ψ = Sh.

Proof. See Subsection 6.4.

Recall that the Shapley value is the unique solution satisfying E and BC. Thus,
Corollary 2 means that the effect of weakening BC to BCEC is compensated by
introducing COV.

4. Implementation of the r-egalitarian Shapley value

This section is devoted to a non-cooperative implementation of the r-egalitarian
Shapley values. As discussed in Pérez-Castrillo and Wettstein (2001), the implemen-
tation theory is a part of Nash program, and is intended to answer the problem of
how to achieve a cooperative solution through non-cooperative behavior.

Our approach is based on the bidding mechanism developed by Pérez-Castrillo
and Wettstein (2001). The mechanism has been adapted to the egalitarian Shapley
values and the discounted Shapley values by van den Brink et al. (2013) and van den
Brink and Funaki (2015), respectively. In this section, we modify the bidding mech-
anism in such a way that the r-egalitarian Shapley values are implemented. Our new
mechanism enables us to explain the difference among variants of the Shapley value
from the bargaining power of players affected by the cost of continuing a bargaining.

We say that a game (N, v) ∈ Γ is zero-monotonic if v(S ∪ i) − v(S) ≥ v(i) for
all i ∈ N , S ⊆ N\i. This means that player i’s contribution to a coalition is always
no less than i’s stand-alone payoff. Fix m ∈ N and we restrict our attention to
zero-monotonic games with non-negative worth of coalitions and with no more than
m players. Namely, we consider the class Γ̂m defined by

Γ̂m = {(N, v) ∈ Γ : n ≤ m, (N, v) is zero-monotonic, v(S) ≥ 0 for all S ⊆ N}.

8



Since the number of players is finite, it suffices to consider finite sequences. We define

Ŝ =
{
{r̂k}mk=1 : r̂k ∈ [0, 1] for all k = 1, · · · ,m

}
.

For r̂ ∈ Ŝ, we define the r̂-egalitarian Shapley value EShr̂ on Γ̂m by

EShr̂i (N, v) = (1− r̂n) ·
v(N)

n
+ Shi(N, v

r̂) for all (N, v) ∈ Γ̂m, i ∈ N,

where vr̂ ∈ V(N) is defined by vr̂(S) = r̂sv(S) for all S ⊆ N , S ̸= ∅.
Similar to the bidding mechanism by Pérez-Castrillo and Wettstein (2001), each

round of our mechanism consists of three stages: (1) all players make bids to each
other, and a proposer is determined; (2) the proposer proposes a payoff distribution
among the remaining players; (3) the players other than the proposer sequentially
accept or reject the offer. Meanwhile, different from the bidding mechanism, after a
rejection of a proposal, we assume that the players other than the proposer incur a
fixed amount of cost before proceeding to the next round. The cost is proportional
to the total payoff over which the remaining players bargain.

We formally describe our mechanism by following the notation of van den Brink
and Funaki (2015). Fix (N, v) ∈ Γ̂m, r̂ ∈ Ŝ. Let Nt be the player set of the game
with which each round t ∈ {1, · · · ,m} will start, so N1 = N .

r̂-modified bidding mechanism.
Round t, t ∈ {1, · · · ,m− 1}.

Stage 1 Each player i ∈ Nt makes bids bij ∈ R for every j ̸= i. For each i ∈ Nt, let

Bi =
∑

j∈Nt\i(b
i
j − bji ) be the net bid of player i. Let αt be the player with the

highest net bid of round t (in case of a non-unique maximizer we choose any
of these maximal bidders to be the “winner” with equal probability). Once αt

has been chosen, player αt pays every other player j ∈ Nt\αt its offered bid
bαt
j . Player αt becomes the proposer in the next stage. Go to Stage 2.

Stage 2 Player αt proposes an offer yαt
j ∈ R to every player j ∈ Nt\αt (this offer is

additional of the bids paid at Stage 1). Go to Stage 3.

Stage 3 The players other than αt, sequentially, either accept or reject the offer. If at
least one player rejects it, then the offer is rejected. In this case, player αt

leaves the game and obtains v(αt). Every player in Nt\αt incurs the same cost
1−r̂n−t

n−t
v(Nt\αt) and proceeds to Round t + 1 to bargain over v(Nt\αt). If all

the players accept the offer, then the offer is implemented and the mechanism
stops.
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In each case, the final payoffs for the players are given as follows:

Acceptance: each player j ∈ Nt\αt receives y
αt
j and player αt obtains

the remainder v(Nt)−
∑

j∈Nt\αt
yαt
j . The final payoff to player j ∈ Nt\αt

is

yαt
j + bαt

j +
t−1∑
k=1

(
bαk
j − 1− r̂n−k

n− k
v(Nk\αk)

)
,

while player αt receives

v(Nt)−
∑

j∈Nt\αt

(yαt
j + bαt

j ) +
t−1∑
k=1

(
bαk
αt

− 1− r̂n−k

n− k
v(Nk\αk)

)
.

Rejection: the final payoff for player αt is

v(αt) +
t−1∑
k=1

(
bαk
αt

− 1− r̂n−k

n− k
v(Nk\αk)

)
.

Round m. Nm = Nm−1\αm−1. Since Nm is a singleton coalition it is a one-player
game in this round. The game immediately stops such that player i ∈ Nm gets
v(Nm). Its final payoff thus is

v(Nm) +
t−1∑
k=1

(
bαk
i − 1− r̂n−k

n− k
v(Nk\αk)

)
.

Theorem 2. The r̂-modified bidding mechanism implements EShr̂(N, v) in any sub-
game perfect equilibrium.

Proof. See Subsection 6.5.

The essence of our new mechanism is to control the bargaining power of players by
appropriately determining the cost of proceeding to the next round. Let us informally
define “bargaining power” as the payoff a player can guarantee in the next round.
Then, higher (resp. lower) cost implies lower (resp. higher) bargaining power.

As an extreme case, consider the equal division value implemented by the se-
quence r̂k = 0 for all k = 1, · · · ,m. In this case, after a rejection of a proposal,
the total attainable payoff for the remaining players in the next round is equal to
the total cost, which forces their bargaining power to be essentially 0. Indeed, in an

10



equilibrium, the proposer at Stage 2 declares that he receives the total payoff v(N),
and all the other players accept the offer. Given this fact, at Stage 1, all players
behave anonymously. As the opposite extreme case, consider the sequence r̂k = 1
for all k = 1, · · · ,m, which corresponds to the original bidding mechanism by Pérez-
Castrillo and Wettstein (2001). In this case, players can fully exert their bargaining
power. Thus, it is intuitive that all players receive the Shapley value, which is the
measure of a player’s own contribution in the game. All the variants of the Shapley
value discussed in Section 3 lie between the two cases.

5. Conclusion

In this study, we first introduced a weakening of the balanced contributions prop-
erty by Myerson (1980), in an attempt to discuss more equitable solutions. By using
this axiom, we characterized the class of r-egalitarian Shapley values that subsumes
many variants of the Shapley value. We also provided a non-cooperative implementa-
tion of the values. A notable finding is that, with a slight modification of the existing
axiom and the rule of the mechanism, many existing solutions can be discussed in a
unified manner.

Both the balanced contributions property and the bidding mechanism have been
tailored to incorporate asymmetric solutions; see Hart and Mas-Colell (1989) and
Pérez-Castrillo and Wettstein (2001). When we consider a convex combination of
solutions, its asymmetric version is complex because each solution has its own asym-
metric (or “weighted”) version. It remains as a topic for future work to incorporate
asymmetric solutions in our framework.

Our new axiom requires the same effect of leaving a game between two players
whose contributions to the grand coalition are the same. One can consider a further
weaker axiom in which the same effect is required only for two symmetric players.
We will discuss this axiom in a separate paper.

6. Proofs

6.1. Preliminary results and axioms

We first provide two propositions.

Proposition 1. Let r ∈ S, (N, v) ∈ Γ with n ≥ 2, and i, j ∈ N . Then,

EShri (N, v)− EShri (N\j, v) + 1− rn−1

n− 1
v(N\j)

=EShrj(N, v)− EShrj(N\i, v) + 1− rn−1

n− 1
v(N\i).

11



Proof. The statement follows from the following equations:

[EShri (N, v)− EShri (N\j, v)
]
−

[
EShrj(N, v)− EShrj(N\i, v)]

=
[
(1− rn)

v(N)

n
+ Shi(N, v

r)− (1− rn−1)
v(N\j)
n− 1

− Shi(N\j, vr)
]

−
[
(1− rn)

v(N)

n
+ Shj(N, v

r)− (1− rn−1)
v(N\i)
n− 1

− Shj(N\i, vr)
]

=[Shi(N, v
r)− Shi(N\j, vr)

]
−

[
Shj(N, v

r)− Shj(N\i, vr)]

+ (1− rn−1) ·
v(N\i)− v(N\j)

n− 1

=(1− rn−1) ·
v(N\i)− v(N\j)

n− 1
,

where the last equality follows from BC of the Shapley value.

Proposition 2. Let r ∈ S, (N, v) ∈ Γ with n ≥ 2, and i ∈ N . Then,

EShri (N, v) =
v(N)− rn−1v(N\i)

n
+

1

n

∑
j ̸=i

[
EShr(N\j, v)− (1− rn−1)v(N\j)

n− 1

]
.

Proof. The statement follows from the following equations:

EShr(N, v) =
(1− rn)v(N)

n
+ Shi(N, v

r)

=
(1− rn)v(N)

n
+
vr(N)− vr(N\i)

n
+

1

n

∑
j ̸=i

Sh(N\j, vr)

=
(1− rn)v(N)

n
+
rnv(N)− rn−1v(N\i)

n

+
1

n

∑
j ̸=i

[
EShr(N\j, v)− (1− rn−1)v(N\j)

n− 1

]
=
v(N)− rn−1v(N\i)

n
+

1

n

∑
j ̸=i

[
EShr(N\j, v)− (1− rn−1)v(N\j)

n− 1

]
,

where the second equality follows from the recursive formula of the Shapley value.5

5See (5.1) of Maschler and Owen (1989).
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We introduce additional notations.6 Let (N, v) ∈ Γ and π : N → U be an
injection. We define (πN, πv) ∈ Γ by πv(πS) = v(S) for all S ⊆ N , S ̸= ∅. For any
x ∈ RN , we define y = π(x) ∈ Rπ(N) by yπ(i) = xi for all i ∈ N .

We say that (N ′, w) is equivalent to (N, v) if there exists an injection π : N → U
such that π(N) = N ′ and πv = w. For each game (N, v) ∈ Γ, we define the binary
relation ∼(N,v) on N as follows:

i ∼(N,v) j ⇔ v(S ∪ i) = v(S ∪ j) for all S ⊆ N\{i, j}.

For each game (N, v) ∈ Γ, we define the binary relation ∼∗
(N,v) on N as follows:

i ∼∗
(N,v) j ⇔ v(N\i) = v(N\j). (3)

We introduce two axioms.

Symmetry, S Let (N, v) ∈ Γ. If i ∼(N,v) j, then ψi(N, v) = ψj(N, v).

Anonymity, A For any (N, v) ∈ Γ and an injection π : N → U , ψ(π(N), π(v)) =
π(ψ(N, v)).

Let N ∈ N . For each T ⊆ N , T ̸= ∅, we define the T -unanimity game uT ∈ V(N)
by uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise.

6.2. Proof of Theorem 1

If part: Since EShr is linear, EShr satisfies COV−. We prove that EShr satisfies
E. For any (N, v) ∈ Γ,∑

i∈N

EShri (N, v) = (1− rn)v(N) +
∑
i∈N

Shi(N, v
r)

= (1− rn)v(N) + rnv(N)

= v(N),

where the second equality follows from E of the Shapley value. By Proposition 1,
EShr satisfies BCEC.

Only if part: For each m ∈ N, we define Γm = {(N, v) ∈ Γ : n = m}. We first
prove three lemmas.

6We follow notations of Peleg and Sudhölter (2007).
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Lemma 1. Let m ≥ 2. Suppose that ψ satisfies BCEC and A on Γm−1. Then ψ
satisfies S on Γm.

Proof. Let (N, v) ∈ Γm and i, j ∈ N , i ̸= j, with i ∼(N,v) j. Since v(N\i) = v(N\j),
by BCEC,

ψi(N, v)− ψj(N, v) = ψi(N\j, v)− ψj(N\i, v). (4)

Since i ∼(N,v) j, (N\j, v) is equivalent to (N\i, v). By A on Γm−1, ψi(N\j, v) =
ψj(N\i, v). Together with (4), we obtain ψi(N, v) = ψj(N, v).

Lemma 2. Let m ≥ 2. Suppose that ψ satisfies E, COV− and S on Γm. Then for
any N ∈ N with n = m and i, j ∈ N , ψi(N, ui) = ψj(N, uj).

Proof. Let x = ψi(N, ui), y = ψj(N, uj). Then,

ψi(N, ui) + ψi(N, uj)
E,S
= x+

1− y

n− 1
,

ψj(N, ui) + ψj(N, uj)
E,S
=

1− x

n− 1
+ y.

Together with

ψi(N, ui) + ψi(N, uj)
COV−
= ψi(N, ui + uj)

S
= ψj(N, ui + uj)

COV−
= ψj(N, ui) + ψj(N, uj),

we obtain

x+
1− y

n− 1
=

1− x

n− 1
+ y.

This equation implies x = y.

Lemma 3. Let m ≥ 2. Suppose that ψ satisfies BCEC and S on Γm. Then for any
N ∈ N with n = m, i, j ∈ N with i ̸= j, and k ∈ N\N ,

ψi(N, ui) = ψi

(
(N\j) ∪ k, ui

)
.

Proof. Let M = N ∪ k. Define v = ui + uM\i and consider the n + 1-person game
(M, v). Note that v(M\l) = v(M\l′) for all l, l′ ∈M .

14



Let x = ψi(M\k, ui), y = ψi(M\j, ui). Then,

ψi(M, v)− ψj(M, v)
BCEC
= ψi(M\j, v)− ψj(M\i, v) = y − ψj(M\i, uM\i), (5)

ψi(M, v)− ψk(M, v)
BCEC
= ψi(M\k, v)− ψk(M\i, v) = x− ψk(M\i, uM\i). (6)

By taking (5)− (6),

ψk(M, v)− ψj(M, v)
BCEC
= y − ψj(M\i, uM\i)− x+ ψk(M\i, uM\i)

S
= y − x. (7)

On the other hand,

ψj(M, v)− ψk(M, v)
BCEC
= ψj(M\k, ui)− ψk(M\j, ui)

S
=

1− x

n− 1
− 1− y

n− 1

=
y − x

n− 1
. (8)

By (7) and (8), we obtain x = y.

To prove the only-if part, it suffices to prove that there exists r = {rk}∞k=1 ∈ S
such that, for any (N, v) ∈ Γ and i ∈ N ,

ψi(N, v) = rn ·
v(N)

n
+

∑
S⊆N\i

pn,s

[
(1− rs+1)v(S ∪ i)− (1− rs)v(S)

]
. (9)

For 1-person games, ψ is uniquely determined by E. We focus on 2-person games.
Let {i, j} ∈ N . Since ψ satisfies A on Γ1, by Lemma 1, ψ satisfies S on Γ2. By E
and S on Γ2, for any {i, j} ∈ N and λ ∈ R,

ψ({i, j}, λuij) =
(λ
2
,
λ

2

)
. (10)

For each {i, j} ∈ N , by E and Lemma 2,

ψi({i, j}, uj) = ψj({i, j}, ui).

For each {i, j} ∈ N , let r({i, j}) ∈ R denote the above equal value. For any {i, j} ∈
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N and k ∈ N\{i, j},

r({i, j}) E
= 1− ψi({i, j}, ui)

L3
= 1− ψi({i, k}, ui)

E
= r({i, k}). (11)

For any {i, j} ∈ N , by replacing i and j with an outside player, we can obtain an
arbitrary 2-person player set {i′, j′} ∈ N . This observation and (11) imply that
r({i, j}) ∈ R does not depend on the choice of {i, j} ∈ N . Choose an arbitrary
{i, j} ∈ N and we define r1 by

r1 = 2r({i, j}). (12)

By COV− and E, for any λ ∈ R,

ψ({i, j}, λuj) =
(λr1

2
, λ− λr1

2

)
, (13)

ψ({i, j}, λui) =
(
λ− λr1

2
,
λr1
2

)
. (14)

Let ({i, j}, v) ∈ Γ2. For each S ⊆ {i, j}, S ̸= ∅, let dS denote the dividend of S in
({i, j}, v).7 Then,

ψi({i, j}, v)
COV−
= ψi({i, j}, d{ij}u{ij}) + ψi({i, j}, diui) + ψi({i, j}, djuj)

(10),(13),(14)
=

d{ij}
2

+ di − di ·
r1
2
+ dj ·

r1
2

=
1

2

{
v({ij})− v(i)− v(j)

}
+ v(i)− v(i) · r1

2
+ v(j) · r1

2
.

Thus for any r2 ∈ R, we get

ψi({i, j}, v) = r2 ·
v({ij})

2
+

1

2
(1− r1)v(i) +

1

2

[
(1− r2)v({ij})− (1− r1)v(j)

]
.

It follows that, when r1 is given by (12) and r2 is arbitrary, ψ coincides with (9) for
2-person games.

We proceed by an induction on the number of players. It suffices to prove that
for each t ∈ N with t ≥ 3, the following claim holds:

Claim t . Suppose that there exist real numbers {r1, · · · , rt−2} such that, for any

7The dividend dS is defined by di = v(i), dj = v(j), and d{ij} = v({ij})− v(i)− v(j).
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(N, v) ∈ Γm with 1 ≤ m ≤ t− 1, and any rt−1 ∈ R, ψ(N, v) coincides with (9).
Then, there exists rt−1 ∈ R such that, for any (N, v) ∈ Γt and any rt ∈ R, ψ(N, v)

coincides with (9).

The proof of Claim t consists of two steps. In Step 1, we endogenously derive
rt−1. In Step 2, we prove that the real number rt−1 derived in Step 1 satisfies the
desired condition.
Step 1: By the induction hypothesis, ψ satisfies A on Γt−1. Thus, by Lemma 1, ψ
satisfies S on Γt. For any N ∈ N with n = t, i, j ∈ N with i ̸= j, and i′, j′ ∈ N with
i′ ̸= j′,

ψj(N, ui)
E,S
=

1− ψi(N, ui)

n− 1
L2
=

1− ψi′(N, ui′)

n− 1

E,S
= ψj′(N, ui′)

For each N ∈ N , let r(N) ∈ R denote the above equal value. For any N ∈ N with
n = t, i, j ∈ N and k ∈ N\N ,

r(N)
E,S
=

1− ψi(N, ui)

n− 1
L3
=

1− ψi

(
(N\j) ∪ k, ui

)
n− 1

E,S
= r

(
(N\j) ∪ k

)
. (15)

For any N ∈ N , by repeatedly replacing a player in N with an outside player, we
can obtain an arbitrary t-person player set N ′ ∈ N . This observation and (15) imply
that r(N) ∈ R does not depend on the choice of N ∈ N . Choose an arbitrary player
set N ∈ N and we define rt−1 by

rt−1 = n(n− 1)r(N)−
t−2∑
m=1

rm. (16)

Step 2: We prove that, when rt−1 is given by (16), ψ(N, v) coincides with (9) for
all (N, v) ∈ Γt.

For each (N, v) ∈ Γ, the binary relation ∼∗
(N,v) defined by (3) is an equivalent

relation and induces a partition on N . Let P(N, v) denote the partition and set

#(N, v) = max
S∈P(N,v)

|S|.

We proceed by an induction on #(N, v).8

8We remark that, in the remaining part, n = t. Namely, we restrict our attention to player sets
N with t players.
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Induction base: Consider a game (N, v) ∈ Γt with #(N, v) = n, i.e.,

v(N\i) = v(N\j) for all i, j ∈ N.

Fix i ∈ N . Then,

ψi(N, v)− ψj(N, v)
BCEC
= ψi(N\j, v)− ψj(N\i, v) for all j ∈ N\i,

ψi(N, v)− ψi(N, v) = 0.

By taking the sum of both sides of the above equations, together with E, we get

nψi(N, v)− v(N)

=
∑
j∈N\i

[
ψi(N\j, v)− ψj(N\i, v)

]
IH
=

∑
j∈N\i

[ ∑
S⊆N\{i,j}

pn−1,s

{
(1− rs+1)v(S ∪ i)− (1− rs)v(S)

}
−

∑
S⊆N\{i,j}

pn−1,s

{
(1− rs+1)v(S ∪ j)− (1− rs)v(S)

}]
=

∑
j∈N\i

[ ∑
S⊆N\{i,j}

pn−1,s(1− rs+1){v(S ∪ i)− v(S ∪ j)}
]

=
∑

S⊊N\i

(n− s− 1)pn−1,s(1− rs+1)v(S ∪ i)−
∑

S⊆N\i:S ̸=∅

s · pn−1,s−1(1− rs)v(S)

=
∑

S⊊N\i

s!(n− s− 1)!

(n− 1)!
(1− rs+1)v(S ∪ i)−

∑
S⊆N\i

s!(n− s− 1)!

(n− 1)!
(1− rs)v(S)

= n ·
∑

S⊆N\i

pn,s

[
(1− rs+1)v(S ∪ i)− (1− rs)v(S)

]
− (1− rn)v(N),

where rt is an arbitrary real number. It follows that, for any rt ∈ R,

nψi(N, v) = rnv(N) + n
∑

S⊆N\i

pn,s

[
(1− rs+1)v(S ∪ i)− (1− rs)v(S)

]
. (17)

Induction step: Suppose that the result holds for any (N, v) ∈ Γt with #(N, v) =
l+1, and we prove the result for (N, v) ∈ Γt with #(N, v) = l, where 1 ≤ l ≤ n− 1.

Let (N, v) ∈ Γt with #(N, v) = l. Choose a coalition T ∈ P(N, v) with |T | = l.
Since l ≤ n − 1, N\T ̸= ∅. Choose players i ∈ T and j ∈ N\T . Define δ =
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v(N\j)− v(N\i) and consider the game (N, v + δuj). In this game,

(v + δuj)(N\j) = v(N\j),
(v + δuj)(N\k) = v(N\j) for all k ∈ T.

It follows that #(N, v + δuj) = l + 1. Thus, we can apply the induction hypothesis.
For any player k ∈ N\j,

ψk(N, v + δuj)

= rn ·
v(N) + δ

n
+

∑
S⊆N\{j,k}

pn,s

[
(1− rs+1)v(S ∪ k)− (1− rs)v(S)

]
+

∑
S⊆N\k:S∋j

pn,s

[
(1− rs+1)

(
v(S ∪ k) + δ

)
− (1− rs)

(
v(S) + δ

)]
= rn ·

v(N)

n
+

∑
S⊆N\k

pn,s

[
(1− rs+1)v(S ∪ k)− (1− rs)v(S)

]
+ δ

[rn
n

+
∑

S⊆N\k,S∋j

pn,s(−rs+1 + rs)
]
.

Since

rn
n

+
∑

S⊆N\k,S∋j

pn,s(−rs+1 + rs)

=
rn
n

+
n−1∑
q=2

{ (n− 2)!(
(n− 2)− (q − 1)

)
!
· pn,q −

(n− 2)!(
(n− 2)− (q − 2)

)
!
· pn,q−1

}
rq +

r1
n(n− 1)

− rn
n

=
n−1∑
q=2

{ q

n(n− 1)
− q − 1

n(n− 1)

}
rq +

r1
n(n− 1)

=
1

n(n− 1)

n−1∑
q=1

rq,
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we obtain

ψk(N, v + δuj) = rn ·
v(N)

n
+

∑
S⊆N\k

pn,s

[
(1− rs+1)v(S ∪ k)− (1− rs) · v(S)

]

+
δ

n(n− 1)

n−1∑
q=1

rq. (18)

By COV−,

ψk(N, v) = ψk(N, v + δuj)− ψk(N, δuj)

(16),(18)
= rn ·

v(N)

n
+

∑
S⊆N\k

pn,s

[
(1− rs+1)v(S ∪ k)− (1− rs) · v(S)

]
.

Thus, the desired equation holds for all k ∈ N\j. E completes the proof.

6.3. Proof of Corollary 1

If part: Since EShr is a linear solution satisfying E and S, by Theorem 2 of Radzik
and Driessen (2013), EShr satisfies D and P.
Only if part: Since ψ satisfies E, COV− and BCEC, by Theorem 1, there exists
r ∈ S such that ψ = EShr. In particular, ψ is a linear solution satisfying E and S.
The desired condition follows from Theorem 2 of Radzik and Driessen (2013).

6.4. Proof of Corollary 2

If part: By Theorem 1, the Shapley value satisfies E and BCEC. One can easily
check that the Shapley value satisfies COV.
Only if part: For each N ∈ N , let (N,0) denote the null game, i.e., 0(S) = 0 for
all S ⊆ N . Since COV is stronger than COV−, by Theorem 1, ψ is an r-egalitarian
Shapley value. Thus,

ψi(N,0) = 0 for all N ∈ N , i ∈ N. (19)

We go back to the proof of only-if part of Theorem 1. By an induction argument,
we prove that ψ is represented in the form of (9) with rt = 0 for all t ∈ N. Let
{i, j} ∈ N . Then, r1 defined by (12) satisfies

r1 = ψj({i, j}, ui) = ψj({i, j},0) = 0,

where the second equality follows from COV and the last equality follows from (19).
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Suppose that rm = 0 for all m ∈ N with m ≤ t−2, and we prove that rt−1 defined
by (16) satisfies rt−1 = 0, where t ≥ 3. Choose N ∈ N with n = t and i, j ∈ N ,
i ̸= j. Then,

rt−1 = n(n− 1)ψj(N, ui)−
t−2∑
m=1

rm = n(n− 1)ψj(N,0)−
t−2∑
m=1

rm = 0,

where the second equality follows from COV, and the last equality follows from the
induction hypothesis and (19).

It follows that rt = 0 for all t ∈ N. By substituting this equation into (9), we
conclude that ψ is the Shapley value.

6.5. Proof of Theorem 2

We mimic the proof of Pérez-Castrillo and Wettstein (2001). We fix (N, v) ∈ Γ̂m

and r̂ ∈ Ŝ.
The proof proceeds by an induction. For round m − 1, it is clear that every

equilibrium outcome coincides with EShr̂. We now assume that every equilibrium
outcome coincides with EShr̂ for round t + 1 and show it also holds for round t,
where t ∈ {1, · · · ,m− 2}.

For i, j ∈ Nt, set

xi :=
1− r̂n−t

n− t
v(Nt\i), ϕi(Nt) := EShr̂i (Nt, v), ϕi(Nt\j) := EShr̂i (Nt\j, v).

We first prove that EShr̂ is indeed an equilibrium outcome. We explicitly construct
an SPE that yields EShr as an SPE outcome. Consider the following strategies:

Stage 1: each player i, i ∈ Nt, announces b
i
j = ϕj(Nt)− ϕj(Nt\i) + xi.

Stage 2: player i ∈ Nt, if he is the proposer, offers y
i
j = ϕj(Nt\i)−xi to every j ̸= i.

Stage 3: player i ∈ Nt, if player j ̸= i is the proposer, accepts any offer greater than
or equal to ϕi(Nt\j)−xi and rejects any offer strictly smaller than ϕi(Nt\j)−xj.

It is clear that these strategies yield EShr̂ for any player who is not the proposer.
Given that the coalition Nt is formed, the proposer also receives the payoff assigned
by EShr̂.
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We now show that all net bids Bi are equal to zero. Following the above men-
tioned strategies,∑
j ̸=i

bij =
∑
j ̸=i

[
ϕj(Nt)− ϕj(Nt\i) + xi

]
=

∑
j ̸=i

[
ϕi(Nt)− ϕi(Nt\j)− (1− r̂n−t) ·

v(Nt\i)− v(Nt\j)
n− t

]
+ (1− r̂n−t)v(Nt\i)

=
∑
j ̸=i

[
ϕi(Nt)− ϕi(Nt\j) + xj

]
=

∑
j ̸=i

bji ,

where the second equality follows from Proposition 1.9

To check that the previous strategies constitute an SPE, note first that the strate-
gies at Stages 2 and 3 are best responses if, for any i ∈ N ,

v(Nt)−
∑
j ̸=i

[
ϕj(Nt\i)−

1− r̂n−t

n− t
v(Nt\i)

]
≥ v(i)

⇒v(Nt)− v(Nt\i) + (1− r̂n−t)v(Nt\i) ≥ v(i)

⇒v(Nt)− r̂n−tv(Nt\i) ≥ v(i).

The last inequality follows from zero-monotonicity, r̂n−t ∈ [0, 1] and v(Nt\i) ≥ 0.
Moreover, the strategies at Stage 1 are also best responses; this part can be proved
by following the same argument of Pérez-Castrillo and Wettstein (2001).

We now show that any SPE yields EShr̂.

Claim 1. In any SPE, at Stage 3, all players other than the proposer αt accept
the offer if yαt

i > ϕi(Nt\αt) − xαt for every player i ̸= αt. Moreover, if yαt
i <

ϕi(N\αt)− xαt for at least some i ̸= αt, then the offer is rejected.

Proof. In the case of a rejection, by the induction argument the payoff to a player
i ̸= αt is ϕi(Nt\αt)− xαt . This establishes the desired condition.

Claim 2. Choose any SPE and a subgame starting from t = 2. Let αt be the proposer.
Then, the final payoffs to player αt and i ̸= αt are v(Nt)− r̂n−tv(Nt\αt)−

∑
j ̸=αt

bαt
j

and ϕi(Nt\αt)− xαt + bαt
i , respectively.

9Note that n− t = |Nt| − 1. So, Proposition 1 is applied to the game (Nt, v).
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Proof. We consider two cases.
Case 1: Suppose that the offer by αt is accepted. In this case, an offer such that
yαt
j > ϕj(Nt\αt)− xαt for some j ̸= αt cannot be part of an SPE, since αt could still
offer ϕi(Nt\αt)− xαt + ϵ to every i ̸= αt, with ϵ < yαt

j − ϕj(Nt\αt) + xαt and ϵ > 0.
Thus, the offer satisfies yαt

j = ϕj(Nt\αt) − xαt for all j ̸= αt, which establish the
desired condition.
Case 2: Suppose that the offer by αt is rejected. In this case, player αt receives
v(αt). Suppose to the contrary that v(Nt)− r̂n−tv(Nt\αt) > v(αt). Then, player αt

can improve his payoff by offering ϕi(Nt\αt)− xαt + ϵ/(n− t) to every i ̸= αt, with
ϵ < v(Nt)− r̂n−tv(Nt\αt)− v(αt), since

v(Nt)−
∑
i̸=αt

[
ϕi(Nt\αt)− xαt +

ϵ

n− t

]
= v(Nt)− v(Nt\αt) + (1− r̂n−t)v(Nt\αt)− ϵ

= v(Nt)− r̂n−tv(Nt\αt)− ϵ

> v(αt).

By the above contradiction, we must have v(Nt) − r̂n−tv(Nt\αt) = v(αt). This
equation and the induction hypothesis establishes the desired condition.

The following claims can be proved by mimicking the proof of the corresponding
claims in Pérez-Castrillo and Wettstein (2001).

Claim 3. In any SPE, Bi = Bj for all i and j and hence Bi = 0 for all i ∈ N .

Claim 4. In any SPE, each player’s payoff is the same regardless of who is chosen
as the proposer.

The following claim completes the proof:

Claim 5. In any SPE, every player receives the payoff assigned by EShr̂.

Proof. Note first that if player i is the proposer, his final payoff is given by zii =
v(Nt) − v(Nt\i) −

∑
j ̸=i b

i
j. On the other hand, if player j ̸= i is the proposer, the

final payoff of player j is given by zji = ϕi(Nt\j) + bji .∑
j

zji =
(
v(Nt)− v(Nt\i)−

∑
j ̸=i

bij

)
+
∑
j ̸=i

(
ϕi(Nt\j)−

1− r̂n−t

n− t
v(Nt\j) + bji

)
= v(Nt)− v(Nt\i) +

∑
j ̸=i

ϕi(Nt\j)−
1− r̂n−t

n− t

∑
j ̸=i

v(Nt\j)

= nϕi(Nt),
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where the last equality follows from Proposition 2. Since player i is indifferent to all
possible choices of the proposer, we obtain the desired condition.
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