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Abstract

In the presence of externalities across coalitions, Dutta et al. (2010) characterize their value

by extending Hart and Mas-Colell reduced game consistency. In the present paper, we provide a

characterization result for the core for games with externalities by extending one form of consistency

studied by Moulin (1985), which is often refereed to as the complement-reduced game property.

Moreover, we analyze another consistency formulated by Davis and Maschler (1965), called the

max-reduced game property and a final consistency called the projection-reduced game property.

In environments with externalities, we discuss some asymmetric results among these different forms

of reduced games.
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1 Introduction

Cooperative game theory is one of the most basic frameworks to analyze coalition formation and to

study how we allocate the surplus obtained from the coalition. Many of the “traditional” models of

cooperative game theory consider the worth of a coalition as the surplus obtained by the members of the

coalition with no help from the other players. This simplification provides a wide variety of sophisticated

ideas and insights on allocations such as the Shapley value and the core. Recent works, however, attempt

to understand environments in which there is mutual influence among coalitions. In these works, such

mutual influence is commonly called externalities among coalitions. By using the concept of externalities,

we can divide the general field of cooperative games into two classes: games with externalities and games

without externalities. Games without externalities, or traditional models, are often refereed to as coalition

function form games, whereas games with externalities are called partition function form games.

In the presence of externalities, the allocation of surplus becomes more complicated. Myerson (1977),

Bolger (1989), Macho-Stadler et al. (2004) and Albizuri et al. (2005) propose the allocation rules by

generalizing the Shapley value to games with externalities. Moreover, Dutta et al. (2010) characterize
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their value by extending Hart and Mas-Colell consistency to games with externalities.

In contrast to the remarkable progress made in studies on values, there are relatively few works on the

core for environments with externalities. One possible reason for this is that a number of types of cores

can be defined in the presence of externalities: the definition of the core depends on the “anticipation”

of deviating players because of externalities. For example, if some agents who are about to deviate from

their original affiliation anticipate the worst reaction from the remaining agents (minimizing the surplus

of the deviating agents), the deviating agents may have less incentive to carry out the deviation. The core

describing this type of stability is called the pessimistic core in Bloch and van den Nouweland (2014) and

Abe and Funaki (2015), which is closely associated with the concept known as the α-core introduced by

Hart and Kurz (1983). Analogous to the pessimistic core, in the presence of externalities, the definition

of each core depends on the anticipation for the reaction of the remaining players. Bloch and van den

Nouweland (2014) formulate such anticipations for reactions as expectation functions and give axiomatic

characterizations to them. However, the axiomatic characterizations for the cores have been left open.

In this paper, we provide characterization results for the cores of games with externalities by using

some forms of reduced game consistencies. We show that if an expectation function satisfies a certain

condition, then we can axiomatize the core based on the expectation function with some axioms. Instead

of Hart and Mas-Colell consistency employed by Dutta et al. (2010), we use the other forms of reduced

game consistencies: Complement, Max and Projection consistencies. The objective of this paper is to

describe what relationships exist between the cores and the consistencies in the presence of externalities.

Our result is summarized in Proposition 3.3 and Table 1.

The remainder of the paper is organized as follows. The next section is devoted to the basic definitions

and notations. In Section 3, we describe the axioms and offer the axiomatization result. We discuss the

differences among some forms of reduced games in Section 4. Section 5 concludes this paper with some

further remarks.

2 Preliminaries

2.1 Games with Externalities

Let N be a set of all players. We consider a finite player set N ⊊ N . A coalition S is a subset of N .

We denote by |S| the number of players in S. For any S ⊆ N , a partition of S is defined by {T1, ..., Th}
where 1 ≤ h ≤ |S|, Ti ∩ Tj = ∅ for i, j = 1, ..., h (i ̸= j), Ti ̸= ∅ for i = 1, ..., h and

∪h
i=1 Ti = S. We

will typically use P or Q to denote a partition. Assume that the partition of the empty set ∅ is {∅}. For
any S ⊆ N , let Π(S) be the set of all partitions of S. We define an embedded coalition of N by (S,P)

satisfying P ∈ Π(N \ S). The set of all embedded coalitions of N is given by

EC(N) = {(S,P) | ∅ ̸= S ⊆ N and P ∈ Π(N \ S)}.

A partition function form game is a pair (N, v), where a partition function v is a function that assigns

a real number to each embedded coalition, namely, v : EC(N) → R. Let ΓA be the set of all partition

function form games: ΓA = {(N, v) | ∅ ̸= N ⊆ N , |N | < ∞, v : EC(N) → R}. For any game, we

restrict payoff vectors to the following set: F (N, v) =
{
x ∈ RN

∣∣∣ ∑j∈N xj ≤ v(N, {∅})
}
. For a set of
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games Γ ⊆ ΓA, a solution on Γ is a function σ that associates a subset σ(N, v) of F (N, v) with every

game (N, v) ∈ Γ.

We denote by xS a restriction of x ∈ RN on coalition S, i.e., xS = (xj)j∈S ∈ RS . To keep our notation

simple, for any coalition S and player i, we typically use S ∪ i or S \ i to denote S ∪ {i} or S \ {i}.

2.2 The Reduced Game

We first define the reduced game in the presence of externalities. In Sections 2 and 3, we focus our

attention on the reduced game known as the complement-reduced game. The other types of reduced

games are discussed in Section 4.

Now, consider Γ ⊆ ΓA and (N, v) ∈ Γ. Let S ⊆ N (S ̸= ∅) and x ∈ RN .

Definition 2.1. The complement-reduced game with respect to S and x is the game (S, vS,x) defined as

follows: for any T ⊆ S (T ̸= ∅) and any Q ∈ Π(S \ T ),

vS,x(T,Q) = v(T ∪ (N \ S),Q)−
∑

j∈N\S

xj .

The complement-reduced game describes that a coalition T always obtains the help of all leaving players

N \S by paying (xj)j∈N\S for them. The complement-reduced game was initially introduced by Moulin

(1985) for games without externalities. Definition 2.1 is the simple extension of the original definition to

games with externalities.

The complement-reduced game depends neither on the order of leaving players nor on the partition

of leaving players. To see this, we offer Lemma 2.2. For notational simplicity, let v−i := vN\i,x, i.e.,

v−i means the complement-reduced game after removing i from the original game. Similarly, we use the

following notation:
(v−i1)−i2 := (vN\i1,x)(N\i1)\i2,xN\i1 .

Lemma 2.2. For any x ∈ RN and any i1, i2 ∈ N (i1 ̸= i2),

(v−i1)−i2 = (v−i2)−i1

= vN\{i1,i2},x.

Proof. For any T ⊆ N \ i1 and any Q ∈ Π(N \ (T ∪ i1)), we have

v−i1(T,Q) = v(T ∪ i1,Q)− xi1 .

For any T ′ ⊆ N \ {i1, i2} and Q′ ∈ Π(N \ (T ∪ {i1, i2})),

(v−i1)−i2(T ′,Q′) = v−i1(T ′ ∪ i2,Q′)− xi2

= v(T ′ ∪ {i1, i2},Q′)− xi1 − xi2 . (2.1)

Similarly, we remove them in the order of i2, i1 and obtain the same game as (2.1).

Next, assume that players i1 and i2 simultaneously leave the game. For any T ′ ⊆ N \ {i1, i2} and any

Q′ ∈ Π(N \ (T ∪ {i1, i2})), we have

vN\{i1,i2},x(T ′,Q′) = v(T ′ ∪ {i1, i2},Q′)− xi1 − xi2 ,

which is the same as (2.1).
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Lemma 2.2 shows that the following two properties hold even in the presence of externalities: (i) the

complement-reduced game is independent of the order of leaving players; (ii) the game obtained by

removing players one by one is equivalent to the game obtained by removing players simultaneously.

In the presence of externalities, the partition of leaving players might influence the worth of a coali-

tion consisting of the remaining players. Definition 2.1 shows that we can ignore this influence in the

complement-reduced game, as all leaving players N \S help the remaining players T and form a coalition

T ∪ (N \ S). This property is unique to the complement-reduced game and not true for the other types

of reduced games. This difference will be expanded upon in Section 4.

It is straightforward to extend Lemma 2.2. Consider T = {i1, ..., it} ⊊ N . For any permutations π, π′

of T = {i1, ..., it}, by repeating Lemma 2.2, we have　

vπ = vπ
′
= vN\T,x,

where, for any permutation π′′, vπ
′′
= (...((v−π

′′
1 )−π

′′
2 )...)−π

′′
t . Player π′′

k means the k-th player leaving

the game. Hence, we obtain useful notation as follows:

v−T := vπ = vπ
′
= vN\T,x.

2.3 Expectation Functions

To define the core of games with externalities, we introduce the notion of expectation function formu-

lated by Bloch and van den Nouweland (2014). As noted in Section 1, there are various definitions of a

core in the presence of externalities. This diversity can be represented by different expectation functions.

Definition 2.3. An expectation function is a mapping ψ associating a partition P such that P ∈ Π(N\S),
with player set N , partition function v and nonempty coalition S ⊆ N , formally,

ψ(N, v, S) ∈ {P ′|P ′ ∈ Π(N \ S)}.

We introduce four important expectation functions. An expectation function is:

• optimistic if
ψ(N, v, S) = arg max

P′∈Π(N\S)
v(S,P ′).

• pessimistic if
ψ(N, v, S) = arg min

P′∈Π(N\S)
v(S,P ′).

• disjunctive if
ψ(N, v, S) = {{is+1}, ..., {in}}.

• conjunctive if
ψ(N, v, S) = {N \ S}.

For the optimistic (pessimistic) expectation function, if there are two different partitions attaining the

highest (lowest) value, then choose the partition with the smaller index.

Now, we introduce a new property of the expectation functions.
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Definition 2.4. Let Γ be a set of games and (N, v) ∈ Γ. An expectation function ψ is complement-

coherent (CC) if, for any S ⊆ N (|S| ≥ 2), h ∈ S, and x ∈ RN ,

ψ(N, v, S) = ψ(N \ h, vN\h,x, S \ h).

Complement-coherence (CC) requires that coalition S’s expectation be equal to coalition S \ h’ s expec-
tation. Note that not only ψ(N, v, S) but also ψ(N \ h, vN\h,x, S \ h) is a partition of N \ S.
In Definition 2.4, we define CC by removing one player. Below, we consider a slight variant of CC.

We call it ĈC and define it as follows: an expectation function ψ is ĈC if, for any S ⊆ N and T ⊊ S

(T ̸= ∅),
v(S, ψ(N, v, S)) = v(S, ψ(N \ T, v−T , S \ T )).

The following proposition shows that CC is equivalent to ĈC.

Lemma 2.5.
CC ⇐⇒ ĈC

Proof. It is clear that ĈC ⇒ CC holds. We show that CC ⇒ ĈC. Let S ⊆ N and T ⊊ S with T ̸= ∅.
Define T = {h1, ..., ht}. By CC, we have

ψ(N, v, S) = ψ(N \ h1, v−h1 , S \ h1)
= ψ(N \ {h1, h2}, (v−h1)−h2 , S \ {h1, h2})
...

= ψ(N \ T, (...(v−h1)...)−ht , S \ T )
= ψ(N \ T, v−T , S \ T ),

where the last equality holds by Lemma 2.2.

The four expectation functions listed above are all CC. For the proof, see Proposition A.1 and Corollary

A.5 in the Appendix.

2.4 The Core Based on an Expectation Function

In this subsection, we introduce the core based on an expectation function. Define X(N, v) ={
x ∈ RN

∣∣∣ ∑j∈N xj = v(N, {∅})
}
. Then, the core based on an expectation function is given as the

following definition.

Definition 2.6. Let Γ be a set of games and (N, v) ∈ Γ. Given an expectation function ψ, the ψ-core

of game (N, v) is defined as follows:

Cψ(N, v) =

x ∈ X(N, v)

∣∣∣∣∣∣for any nonempty S ⊆ N,
∑
j∈S

xj ≥ v(S, ψ(N, v, S))

 .

If expectation function ψ is optimistic, pessimistic, disjunctive or conjunctive, then the ψ-core means the

optimistic core Copt, the pessimistic core Cpes, the disjunctive core Cdis, or the conjunctive core Ccon,
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respectively. For any expectation function ψ, let ΓCψ denote the class of games in which the nonempty

ψ-core exists.*1

3 An Axiomatic Approach

We introduce the axioms for our characterization results.

Axiom 1 (comp-RGP). Let Γ be a set of games, (N, v) ∈ Γ and S ⊆ N . A solution σ on Γ satisfies

the complement-reduced game property (comp-RGP) if for every x ∈ σ(N, v), we have (S, vS,x) ∈ Γ and

xS ∈ σ(S, vS,x).

Axiom 2 (NE on Γ). Let Γ be a set of games. A solution σ on Γ satisfies non-emptiness on Γ (NE on

Γ) if for every (N, v) ∈ Γ, we have σ(N, v) ̸= ∅.

Axiom 3 (ψ-IR). Let ψ be an expectation function. A solution σ on Γ satisfies ψ-individual rationality

(ψ-IR) if for every (N, v) ∈ Γ, any x ∈ σ(N, v), and every player i ∈ N , we have xi ≥ v({i}, ψ(N, v, {i})).

Note that Axiom 1 is independent of expectation function ψ. Axiom 3 directly depends on ψ. Axiom

2 may depend on ψ if Γ is specified by ψ. For any ψ, the ψ-core satisfies ψ-IR because the expectation

function ψ is common to both ψ-core and ψ-IR. It is also clear that ψ-core is nonempty on Γ if Γ = ΓCψ .

For comp-RGP, we have the following result.

Proposition 3.1. If an expectation function ψ is CC, the ψ-core satisfies comp-RGP on ΓCψ .

Proof. Let Cψ(N, v) be the ψ-core of (N, v) and x ∈ Cψ(N, v). For every nonempty S ⊆ N , it suffices

to show that xS ∈ Cψ(S, vS,x). By Definition 2.1, for any T ⊆ S (T ̸= ∅), we have∑
j∈T

xj − vS,x(T, ψ(S, vS,x, T ))

=
∑
j∈T

xj −

v(T ∪ (N \ S), ψ(S, vS,x, T ))−
∑

j∈N\S

xj


=

∑
j∈T∪(N\S)

xj − v(T ∪ (N \ S), ψ(S, vS,x, T ))

≥ v(T ∪ (N \ S), ψ(N, v, T ∪ (N \ S)))− v(T ∪ (N \ S), ψ(S, vS,x, T )) (3.1)

= v(T ∪ (N \ S), ψ(S, vS,x, T ))− v(T ∪ (N \ S), ψ(S, vS,x, T )) (3.2)

= 0,

where (3.1) holds because of x ∈ Cψ(N, v), and we have (3.2) because ψ is CC.

Now, we offer the axiomatization below. We first show that a well-known result holds even in games

with externalities (Lemma 3.2). This result will be used in the proof of the axiomatization (Proposition

3.3).

*1 Abe and Funaki (2015) generalize the Bondareva-Shapley condition and define the class ΓCψ . The balancedness of

each type of core is also studied.
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Lemma 3.2. Let ψ be an expectation function and σ be a solution on a set of games Γ. If σ satisfies

comp-RGP and ψ-IR, then σ satisfies efficiency: for any x ∈ σ(N, v)∑
j∈N

xj = v(N, {∅}).

Proof. This is a simple extension of Peleg (1986) and Tadenuma (1992). Let (N, v) ∈ Γ and x ∈ σ(N, v).

Assume that σ is not efficient. Then, there exists x ∈ σ(N, v) such that
∑
j∈N xj < v(N, {∅}). Let i

be a player in N . By comp-RGP, we have xi ∈ σ
(
{i}, v{i},x

)
. For any ψ, by ψ-IR, we have xi ≥

v{i},x({i}, {∅}) = v(N, {∅}) −
∑
j∈N\i xj . Hence,

∑
j∈N xj ≥ v(N, {∅}), and the desired contradiction

has been obtained.

Proposition 3.3. Let ψ be an expectation function. If ψ is CC, then ψ-core Cψ is the unique function

on ΓCψ that satisfies comp-RGP, NE on ΓCψ , and ψ-IR.

Proof. We prove uniqueness next. Let σ be a solution satisfying the three conditions. The proof consists

of two parts: σ ⊆ Cψ and Cψ ⊆ σ.

Part 1:

First, we show that σ(N, v) ⊆ Cψ(N, v) for any (N, v) ∈ ΓCψ . From Lemma 3.2, it follows that σ

satisfies efficiency.

Induction base:

For |N | = 1, σ(N, v) ⊆ Cψ(N, v) because of efficiency. For |N | = 2, let N = {i, j}. By efficiency,

xi + xj = v(N, {∅}) for any x ∈ σ(N, v). By ψ-IR, xi ≥ v({i}, {{j}}) and xj ≥ v({j}, {{i}}). Hence,

σ(N, v) ⊆ Cψ(N, v).

Induction proof:

We assume that σ(N, v′) ⊆ Cψ(N, v′) for any (N, v′) ∈ Γψ with |N | ≤ k (k ≥ 2). We show that for

any (M, v) ∈ Γψ with |M | = k + 1, we have σ(M, v) ⊆ Cψ(M,v).

Let x ∈ σ(M, v) and h ∈M . By comp-RGP, we have xM\h ∈ σ(M \ h, vM\h,x). By the assumption of

induction, σ(M \ h, vM\h,x) ⊆ Cψ(M \ h, vM\h,x). Hence, for any nonempty S ⊆M \ h,∑
j∈S

xj ≥ vM\h,x(S, ψ(M \ h, vM\h,P,x, S))

= v(S ∪ h, ψ(M \ h, vM\h,P,x, S))− xh

= v(S ∪ h, ψ(M,v, S ∪ h))− xh, (3.3)

where (3.3) holds because ψ is CC. Thus, we obtain∑
j∈S∪h

xj ≥ v(S ∪ h, ψ(M, v, S ∪ h))

for any nonempty S ⊆M \h. In addition, by ψ-IR, we have xi ≥ v({i}, ψ(M, v, {i})). Hence, σ(M,v) ⊆
Cψ(M, v). By induction, it follows that σ(N, v) ⊆ Cψ(N, v) for all (N, v) in Γψ.

Part 2:
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Next, we show that Cψ(N, v) ⊆ σ(N, v) for all (N, v) ∈ ΓCψ . To prove this, we construct a game (M,u)

by using a game (N, v) ∈ ΓCψ and a payoff vector x ∈ Cψ(N, v). Fix (N, v) ∈ ΓCψ and x ∈ Cψ(N, v).

We define M := N ∪ h, where h ∈ N and h ̸∈ N . Define u as follows:

u({h},P ′) = 0 for all P ′ ∈ Π(M \ h),
u(S ∪ h,P ′′) = v(S,P ′′) for all P ′′ ∈ Π(M \ (S ∪ h)),
u(S,P ′′′) =

∑
j∈S xj , for all P ′′′ ∈ Π(M \ S).

(3.4)

Now, consider y = (x, 0) ∈ RM . We will prove the following claims.

Claim 1 y ∈ Cψ(M,u).

Proof. By the definition of y and u, we have∑
j∈M

yj =
∑
j∈N

xj = v(N, {∅}) = u(M, {∅}).

First, we show that v = uM\h,y. For any S ⊆ N =M \ h and any P ′′ ∈ Π(N \ S), we have

uM\h,y(S,P ′′) = u(S ∪ h,P ′′)− yh

= u(S ∪ h,P ′′)

= v(S,P ′′),

where the last equality holds because of the second line of (3.4).

Now, for any S ⊆ N =M \ h, we have∑
j∈S∪h

yj =
∑
j∈S

xj ≥ v(S, ψ(N, v, S))

= u(S ∪ h, ψ(M,u, S ∪ h)).

The last equality holds because ψ is CC and v is a complement-reduced game of u. In addition, by the

third line of (3.4), for any S ⊆ N =M \ h and any P ′′′ ∈ Π(M \ S), we have∑
j∈S

yj =
∑
j∈S

xj = u(S,P ′′′).

This completes the proof of Claim 1.

Claim 2 {y} = Cψ(M,u).

Proof. If there exists z ∈ Cψ(M,u) such that z ̸= y, we must have
∑
j∈M zj = u(M, {∅}) = v(N, {∅}) =∑

j∈N xj = u(N, {{h}}) ≤
∑
j∈N zj , and zh ≥ u(h,P ′) = 0 for any P ′ ∈ Π(M \ h). Hence, zh = 0.

For any i ∈ N and any P ′′′ ∈ Π(M \ i), we have zi ≥ u(i,P ′′′) = xi = yi and, also,
∑
j∈N zj =∑

j∈M zj = u(M, {∅}) =
∑
j∈M yj =

∑
j∈N yj . Thus, we obtain zi = yi for all i ∈ N , i.e., z = y. This

completes the proof of Claim 2.

Now, consider x ∈ Cψ(N, v) and (M,u) again. By the first half of this proof, σ(M,u) ⊆ Cψ(M,u).

As mentioned above, Cψ(M,u) = {y}. By connecting them, σ(M,u) ⊆ Cψ(M,u) = {y}. By NE on

Γψ, we obtain σ(M,u) = Cψ(M,u) = {y}. Furthermore, by comp-RGP and v = uM\h,y, we have

x = yN ∈ σ(N, uM\h,y) = σ(N, v). Thus, Cψ(N, v) ⊆ σ(N, v).
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Proposition 3.3 states that we can generalize the axiomatization of the core of games without externalities

by using expectation function ψ. Note that if we “remove” externalities, this axiomatization coincides

with Tadenuma’s approach. To see this, consider an expectation function ψ as a function transforming

a game with externalities v into a game without externalities w, by setting w(S) := v(S, ψ(N, v, S)).

Proposition 3.3 shows that if ψ is CC, then this transformation ψ keeps the core’s axiomatic characteri-

zation unchanged. As we have mentioned, the four expectation functions are all CC. Therefore, we have

the following corollary.

Corollary 3.4. The four types of cores, i.e., Copt, Cpes, Cdis and Ccon, can be axiomatized with axioms

1-3 on each class: ΓCopt ,ΓCpes ,ΓCdis and ΓCcon , respectively.

An example of expectation function that is not CC is

ψ(N, v, S) =

{
{N \ S} if |S| ≥ 2,
{{is+1}, ..., {in}} if |S| = 1.

This expectation function can be seen as the combination of the conjunctive expectation and the dis-

junctive expectation. Expectation functions consisting of different expectation rules are, typically, not

CC.

In view of Proposition 3.3, one might consider that the analogous proof can be adapted for the other

types of reduced games. However, this conjecture is not necessarily true. We will see this fact in the

following section.

4 The Other Reduced Games

In this section, we will extend and analyze the max-reduced game and the projection-reduced game,

which were formulated by Davis and Maschler (1965) and Funaki and Yamato (2001), respectively. This

extension includes two technical difficulties. First, we need a partition as the additional specifier to

define the reduced game. We use vS,P,x to denote the reduced game instead of the previous notation

vS,x. Second, the generalization of the max-reduced game yields two possible extensions: max-I and

max-II. The difference between the two is the domain of maximization. For any coalition S ⊆ N , the

former ignores the partition structure of N \ S and chooses C ⊆ N \ S, whereas the latter chooses C in

the partition of N \ S.
Formally, we consider a set of games Γ ⊆ ΓA and a game (N, v) ∈ Γ. Let S ⊆ N (S ̸= ∅), P ∈ Π(N \S),

and x ∈ RN .

Definition 4.1. The max-reduced game (I) with respect to S,P and x is the game (S, vS,P,xm1 ) defined as

follows: for any T ⊆ S (T ̸= ∅) and any Q ∈ Π(S \ T ),

vS,P,xm1 (T,Q) =


max
C⊆N\S

v(T ∪ C,Q∪ (P|(N\S)\C))−
∑
j∈C

xj

 , if T ⊊ S

v(N, {∅})−
∑
j∈N\S xj , if T = S

.

The max-reduced game (II), (S, vS,P,xm2 ), is also defined by replacing the domain of the maximization

C ⊆ N \ S with C ⊆ P.
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Definition 4.2. The projection-reduced game with respect to S,P and x is the game (S, vS,P,xp ) defined

as follows: for any T ⊆ S (T ̸= ∅) and any Q ∈ Π(S \ T ),

vS,P,xp (T,Q) =

{
v(T,Q∪ P), if T ⊊ S
v(N, {∅})−

∑
j∈N\S xj , if T = S

.

If players leave the game one by one, the max-reduced games (both I and II) and the projection-reduced

game are all independent of the order of the leaving players and the complement-reduced game. However,

if two or more players simultaneously leave the game as a single group, the max-reduced games (I, II)

and the projection-reduced game may depend on the partition of the leaving players.*2 This contrasts

with the fact that the complement-reduced game is independent of the partition of the leaving players.

The gap between “one-by-one leaving” and “at-once leaving” yields two RGPs. We call them “one-by-

one RGP” and “at-once RGP.” It is clear that the one-by-one RGP is weaker than the at-once RGP. We

restrict our attention to the weaker RGP, i.e., one-by-one RGP, and denote it, simply, RGP hereafter.

Now, we return to the main question of this section: can we adapt the technique of Proposition 3.3 to

the proof of the axiomatizations for the max and the projection-reduced game? Table 1 describes the

relationship between the cores and RGPs. It shows that the pessimistic core, the disjunctive core and

the conjunctive core do not satisfy all RGPs except comp-RGP. All propositions and examples of Table

1 are found in the Appendix.

Table 1 The relationship between the cores and RGPs

RGP

Max(I) Max(II) Projection Complement

Optimistic core Yes Yes Yes Yes

Pessimistic core - - - Yes

Disjunctive core - - - Yes

Conjunctive core - - - Yes

Moreover, RGP based on one type of reduced game is not necessarily compatible with coherence based

on the same type of reduced game. To see this, we define max(I, II)-coherence and projection-coherence in

the same manner as CC. There is no ambiguity in defining these coherences. We define them by replacing

vN\h,x in Definition 2.4 with v
N\h,{h},x
m1 , v

N\h,{h},x
m2 or v

N\h,{h},x
p .*3 Table 2 shows the relationship among

the four expectation functions and coherences. All propositions and examples of Table 2 are found in

the Appendix.

It is important that Table 1 and 2 indicate the difficulty of the generalization for the axiomatization

using reduced game consistency. For simplicity, we focus on, for example, the max(I)-reduced game.

The following discussion also holds for the max(II) and the projection-reduced games. Now, the fol-

lowing statement is true: even if an expectation function ψ satisfies max(I)-coherence, the ψ-core does

*2 Formally, as in Lemma 2.2, we have (v−i1
m1 )−i2

m1 = (v−i2
m1 )−i1

m1 . However, there possibly exist partitions P and P ′ such

that v
N\{i1,i2},P,x
m1 ̸= v

N\{i1,i2},P′,x
m1 , where (m1) can be replaced with (m2) or (p).

*3 In other words, we use the weaker definition based on “one-by-one leaving.”
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Table 2 The relationship between expectation functions and coherence

Coherence

Max(I) Max(II) Projection Complement

Optimistic expectation - - - Yes

Pessimistic expectation - - - Yes

Disjunctive expectation Yes Yes Yes Yes

Conjunctive expectation Yes Yes Yes Yes

not necessarily satisfy max(I)-RGP. Moreover, the disjunctive expectation satisfies max(I)-coherence,

whereas the disjunctive core does not satisfy max(I)-RGP. This statement contrasts with that of Propo-

sition 3.1. The max(I)-version of Proposition 3.3, therefore, does not hold. Moreover, any additional

axioms no longer support the axiomatization based on reduced game consistency because the ψ-core

violates RGP. The completion of our axiomatization in Proposition 3.3 is ascribed to the property of the

complement-reduced game, which enables us to combine its coherence with its RGP.

5 Concluding Remarks

In this paper, we analyzed the relationship between reduced games and cores in the presence of exter-

nalities. We showed that if an expectation function ψ is CC, then the ψ-core can be axiomatized. In

this section, we add three remarks.

The first remark concerns the relationship between CC and subset consistency studied by Bloch and

van den Nouweland (2014).*4 We change the original definition slightly to suit our framework as follows:

for any S ⊆ N and T ⊆ S,
ψ(N, v, S) = ψ(N, v, T )|(N\S),

where ψ(N, v, T )|(N\S) is a partition of N \ S, the elements of which are the same as ψ(N, v, T ).*5

Subset consistency describes that all players within S share the expectation on the behavior of outside

players N \ S. Subset consistency is not the sufficient condition for the axiomatization and is logically

independent of CC: there is an expectation function that satisfies subset consistency but violates CC,

and vice versa.

Second, one might believe that the condition for the axiomatization, such as CC, should not depend

on the specific reduced game, such as the complement-reduced game. We note that it is actually possible

to define a condition that is free from any form of reduced game and is a sufficient condition for the

axiomatization as follows. Let (N, v) be a game. For any h ∈ N , consider w : EC(N \ h) → R such

that v(S,P) ≥ v(S,P ′) ⇐⇒ w(S \ h,P) ≥ w(S \ h,P ′) for any S ∋ h and any P,P ′ ∈ Π(N \ S).
Then ψ(N,S, v) = ψ(N \h, S \h,w). It is clear that this condition does not depend on any specific type

of reduced game and is a sufficient condition for the axiomatization. Therefore, although CC is weaker

*4 Bloch and van den Nouweland (2014) define their coherence, which describes coherence within a partition. We,

however, focus on subset consistency because our CC is closer to subset consistency rather than the coherence.
*5 Formally, for any partition P and coalition S ⊆ N , let P|S be given by P|S = {S ∩ C | C ∈ P, S ∩ C ̸= ∅} ∈ Π(S).
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than this condition, one can replace CC with this condition. The four expectation functions listed earlier

all satisfy this condition.

Third, throughout this paper we used expectation functions associated with partitions, namely,

ψ(N, v, S) ∈ Π(N \S). However, the probabilistic approach, as is sometimes seen in the papers studying

the generalization of the Shapley value, is also possible, in which ψ(N, v, S) is a probability distribution

over Π(N \ S). Each definition and result in this paper can be straightforwardly adjusted to the

probabilistic framework. It is notable that any convex combination of the four expectation functions

listed earlier, for instance, 50% for the best partition arg max
P′∈Π(N\S)

v(S,P ′) and 50% for the worst partition

arg min
P′∈Π(N\S)

v(S,P ′), is still CC.

Appendix

To distinguish each form of reduced game, in this appendix, we use symbols vS,P,xm1 , vS,P,xm2 , vS,P,xp and

vS,xc to denote max(I), max(II), projection and complement-type of reduced game, respectively. Table

A.1 and Table A.2 correspond to Table 1 and Table 2, respectively. The number assigned to each cell

represents the proposition or example describing the cell, e.g., for the proposition showing that the

optimistic core satisfies Max-I RGP, see Proposition A.8.

Table A.1 The relationship between expectation cores and RGP (corresponding to Table 1)

RGP

Max(I) Max(II) Projection Complement

Optimistic core Yes A.8 Yes A.8 Yes A.8 Yes Prop.3.1

Pessimistic core - A.9 - A.9 - A.11 Yes Prop.3.1

Disjunctive core - A.10 - A.10 - A.11 Yes Prop.3.1

Conjunctive core - A.9 - A.9 - A.12 Yes Prop.3.1

Table A.2 The relationship between expectation functions and coherence (corresponding to Table 2)

Coherence

Max(I) Max(II) Projection Complement

Optimistic expectation - A.6 - A.6 - A.6 Yes A.1

Pessimistic expectation - A.6 - A.6 - A.6 Yes A.1

Disjunctive expectation Yes A.5 Yes A.5 Yes A.5 Yes A.5

Conjunctive expectation Yes A.5 Yes A.5 Yes A.5 Yes A.5

Proposition A.1. If ψ is optimistic or pessimistic, then ψ is CC.

Proof. We denote by ψopt the optimistic expectation function. Let (N, v) be a game, and S ⊆ N

12



(|S| ≥ 2). We define P∗ as follows:

P∗ := ψopt(N, v, S) = arg max
P′∈Π(N\S)

v(S,P ′). (A.1)

For any h ∈ S and x ∈ RN , we have

vN\h,x
c (S \ h,P∗) = v(S,P∗)− xh

= max
P′∈Π(N\S)

[v(S,P ′)− xh]

= max
P′∈Π(N\S)

[vN\h,x
c (S \ h,P ′)],

where the first equality holds by the definition of complement reduced games, the second by (A.1) and

the last by the definition of complement reduced games. Hence, we obtain

P∗ = arg max
P′∈Π(N\S)

vN\h,x
c (S \ h,P ′) = ψopt(N \ h, vN\h,x

c , S \ h),

and, then, ψopt(N, v, S) = ψopt(N \ h, vN\h,x
c , S \ h), which implies ψopt is CC.

By replacing max with min, we complete the proof of the pessimistic expectation function ψpes as

well.

Proposition A.2. If ψ satisfies the following condition: for any games (N, v), (M,w), and nonempty

coalitions S ⊆ N , T ⊆M ,

N \ S =M \ T =⇒ ψ(N, v, S) = ψ(M,w, T ), (A.2)

then ψ satisfies all four types of coherence: Max-I, Max-II, Projection and Complement.

Proof. We prove CC (or, complement coherence). The other types of coherence are obtained in the

same way. Fix a game (N, v). For any x ∈ RN and h ∈ N , we can specify the complement reduced game

(N \ h, vN\h,x
c ). For any S such that h ∈ S ⊆ N , we have

N \ S = (N \ h) \ (S \ h).

Using (A.2), we obtain ψ(N, v, S) = ψ(N \ h, vN\h,x
c , S \ h, )

Lemma A.3. If ψ is disjunctive, then ψ satisfies (A.2).

Proof. We denote by ψdis the disjunctive expectation function. For any nonempty T and S with T ∈
S ⊆ N , and any w : EC(N \T ) → R, we have ψdis(N, v, S) = {{i}|i ∈ N \S} = ψdis(N \T,w, S \T ).

Lemma A.4. If ψ is conjunctive, then ψ satisfies (A.2).

Proof. This is similar to Lemma A.3. Let ψcon denote the conjunctive expectation function. We have

ψcon(N, v, S) = {N \ S} = ψcon(N \ T,w, S \ T ).

Corollary A.5. If ψ is disjunctive or conjunctive, then ψ satisfies all four types of coherence.

Proof. See Lemmas A.3, A.4 and Proposition A.2.
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Example A.6. Consider the following 4-player game: N = {i1, i2, i3, i4};

v(N, {∅}) = 12;

v({i, j, k}, {{h}}) = 5 and v({h}, {{i, j, k}}) = 0, for {i, j, k, h} = N ;

v({i, j}, {{k, h}}) = 4, for {i, j, k, h} = N ;

v({i, j}, {{k}, {h}}) = 3 and v({k}, {{i, j}, {h}}) = 1, for {i, j, k, h} = N ;

v({i}, {{j}, {k}, {h}}) = 2, for {i, j, k, h} = N.

Let x = (3, 3, 3, 3), S = {i1, i2} and player h = 1. For the optimistic expectation function, we have

arg max
P′∈Π(N\S)

v(S,P ′) = {{i3, i4}},

because maxP′∈Π(N\S) v(S,P ′) = max{v(S, {{i3, i4}}), v(S, {{i3}, {i4}})} = max{4, 3}. However, in the

Max-I reduced game, we have

arg max
P′∈Π(N\S)

v−hm1(S \ h,P ′) = {{i3}, {i4}},

because

max
P′∈Π(N\S)

v−hm1(S \ h,P ′) = max

{
v(S, {{i3, i4}})− xh, v(S \ h, {{i1}, {i3, i4}}),
v(S, {{i3}, {i4}})− xh, v(S \ h, {{i1}, {i3}, {i4}})

}
(A.3)

= max{4− 3, 1, 3− 3, 2}
= 2,

which is the worth of the bottom-right element in (A.3). Hence, ψopt(N, v, S) = {{i3, i4}} ̸=
{{i3}, {i4}} = ψopt(N \ h, v−hm1, S \ h). For the optimistic expectation function, this example is still valid

for Max-II and Projection coherence as well. For the pessimistic expectation function, we can generate

the example by swapping v({i, j}, {{i, j}, {k, h}}) for v({i, j}, {{i, j}, {k}, {h}}).

Lemma A.7. Let (N, v) ∈ Γ. Let S ⊆ N , P ∈ Π(N \ S) and x ∈ RN . We denote each type of reduced

game by vS,P,xm1 , vS,P,xm2 , vS,P,xp and vS,xc , respectively. Then, for any T ⊆ S (T ̸= ∅) and Q ∈ Π(S \ T ),
we have

vS,P,xm1 (T,Q) ≥ vS,P,xm2 (T,Q),

vS,P,xm2 (T,Q) ≥ vS,P,xp (T,Q),

vS,P,xm2 (T,Q) ≥ vS,xc (T,Q).

Proof. The first inequality follows from the domain of maximization: in view of the definitions, for any

P ∈ Π(N \ S),
{C|C ∈ P} (or, Max-II) ⊆ {C|C ⊆ N \ S} (or, Max-I) .

The second (third) inequality holds because we can take ∅ (N \ S) as maximizer C.

Proposition A.8. The optimistic-core satisfies all types of RGP on ΓCopt : maxI-RGP, maxII-RGP,

projection-RGP and comp-RGP.
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Proof. Let Copt(N, v) be the optimistic core of (N, v) and x ∈ Copt(N, v). We show that the optimistic-

core satisfies maxI-RGP. For any S ⊆ N , T ⊊ S (T ̸= ∅) and P ∈ Π(N \ S), we have∑
j∈T

xj − max
Q∈Π(S\T )

vS,P,xm1 (T,Q)

=
∑
j∈T

xj − max
Q∈Π(S\T )

max
C⊆N\S

v(T ∪ C,Q∪ (P|(N\S)\C))−
∑
j∈C

xj


=

∑
j∈T

xj −

v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗))−
∑
j∈C∗

xj

 (A.4)

=
∑

j∈T∪C∗

xj − v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗))

≥ max
P′∈Π(N\(T∪C∗))

v(T,P ′)− v(T ∪ C∗,Q∗ ∪ (P|(N\S)\C∗)) (A.5)

≥ 0,

where C∗,Q∗ in (A.4) are maximizers of the target formula, and (A.5) holds because x ∈ Copt(N, v).

Similarly, for T = S, we have

∑
j∈S

xj − vS,P,x(S, {∅}) =
∑
j∈S

xj −

v(N, {∅})− ∑
j∈N\S

xj


=

∑
j∈N

xj − v(N, {∅})

= 0.

By Lemma A.7, we can replace vS,P,xm1 with vS,P,xm2 , vS,P,xp and vS,P,xc , respectively. Then, we obtain the

desired proposition.

Example A.9. Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =

 12 if (S,P) = (N, {∅}),
6 if (S,P) = ({i, j}, {{k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (1, 3, 4, 4). Then, x ∈ Cpes(N, v) = Ccon(N, v). Now, for S = {1, 2} and

P = {{3}, {4}}, we have the following Max-I reduced game:

vS,P,xm1 ({1, 2}, {∅}) = 12− (4 + 4) = 4,

vS,P,xm1 ({1}, {{2}}) = 6− 4 = 2,

vS,P,xm1 ({2}, {{1}}) = 6− 4 = 2.

The restriction of x, xS = (1, 3), is out of the pessimistic core (and the conjunctive core) of the reduced

game: xS = (1, 3) ̸∈ {(2, 2)} = Cpes(S, vS,P,xm1 ) = Ccon(S, vS,P,xm1 ). We have the Max-II reduced game as

well as Max-I.

Example A.10. Consider the following 5-player game: N = {1, 2, 3, 4, 5},

v(S,P) =

 15 if (S,P) = (N, {∅}),
7 if (S,P) = ({i, j}, {{k}, {h, l}}),
0 otherwise.
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Let x = (x1, x2, x3, x4, x5) = (2, 2, 4, 4, 3). Then, x ∈ Cdis(N, v). For S = {3, 4} (who obtain 4 in x) and

P = {{1}, {2, 5}}, we have the following Max-I reduced game:

vS,P,xm1 ({3, 4}, {∅}) = 15− (2 + 2 + 3) = 8,

vS,P,xm1 ({3}, {{4}}) = 7− 2 = 5,

vS,P,xm1 ({4}, {{3}}) = 7− 2 = 5.

Hence, the disjunctive core is empty. We have the same result in Max-II as well as Max-I.

Example A.11. Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =


12 if (S,P) = (N, {∅}),
4 if (S,P) = ({i}, {{j, k, h}}),
4 if (S,P) = ({i}, {{j, k}, {h}}),
3 if (S,P) = ({i}, {{j}, {k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (3, 3, 3, 3). Then, x ∈ Cpes(N, v) = Cdis(N, v). For S = {1, 2} and P =

{{3, 4}}, we have the following projection reduced game:

vS,P,xp ({1, 2}, {∅}) = 12− (3 + 3) = 6,

vS,P,xp ({1}, {{2}}) = 4,

vS,P,xp ({2}, {{1}}) = 4.

Hence, the pessimistic core and the disjunctive core are empty in the reduced game.

Example A.12. Consider the following 4-player game: N = {1, 2, 3, 4},

v(S,P) =


12 if (S,P) = (N, {∅}),
3 if (S,P) = ({i}, {{j, k, h}}),
4 if (S,P) = ({i}, {{j, k}, {h}}),
4 if (S,P) = ({i}, {{j}, {k}, {h}}),
0 otherwise.

Let x = (x1, x2, x3, x4) = (3, 3, 3, 3). Then, x ∈ Ccon(N, v). For S = {1, 2} and P = {{3, 4}}, we have

the following projection reduced game:

vS,P,xp ({1, 2}, {∅}) = 12− (3 + 3) = 6,

vS,P,xp ({1}, {{2}}) = 4,

vS,P,xp ({2}, {{1}}) = 4.

Hence, the conjunctive core of the reduced game becomes empty.
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