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Abstract

In this paper, we study games with externalities. In the presence of externalities, the

worth of a coalition depends on the coalition itself and a partition of the player set. In

the presence of externalities, superadditivity is no longer sufficient for the efficiency of

the grand coalition: some partitions may yield more surplus than the grand coalition.

This result was indicated by Hafalir (GEB 61:242-258, 2007), who proposed convexity

as the sufficient condition. We attempt to extend the results of Hafalir and explore

certain weaker sufficient conditions to achieve the efficiency of the grand coalition. Our

approach features two types of externalities: positive and negative. Furthermore, we

examine a condition for the non-emptiness of the core. In the presence of externalities,

the definition of the core is not unique. In this light, we specifically analyze the optimistic

core which is the smallest of all types of cores. We prove that a combination of negative

externalities and particular conditions can induce the nonempty optimistic core.

Keywords: Coalition formation; Core; Efficiency; Externalities; Partition function games

JEL Classification: C71

1 Introduction

The purpose of this paper is to offer certain conditions in which the coalition among all

players—the grand coalition—becomes efficient in environments with externalities. Further-

more, we study a condition for stability in terms of deviations from the grand coalition.

In the cooperative game theory literature, many methods have been proposed to allocate the

surplus generated by a group of players. Such allocations are often referred to as “solutions.”

In attempts to explore solutions, many studies have focused on the “fairness” of solutions and
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have (at least somewhat) taken their “efficiency” for granted: almost all solutions allocate the

surplus of the grand coalition.*1 Therefore, previous studies that have studied solutions have

assumed the formation of the grand coalition.

As an assumption that justifies the formation of the grand coalition, superadditivity is well

known. Justifying the grand coalition is based on the plausible fact that superadditivity

implies the grand coalition’s efficiency—the surplus of the grand coalition is greater than

the entire aggregated surplus of each partitioned coalition (Definition 2.1). If superadditivity

holds and the surplus is transferable among players, the players certainly derive more benefit

by forming larger coalitions and derive the most benefit, as a consequence, by forming the

largest coalition: the grand coalition. However, this reasoning is no longer valid when there

are externalities among coalitions.

In games without externalities (often referred to as coalition function form games), it is clear

that superadditivity makes the grand coalition efficient. Nevertheless, the same is not always

true in games with externalities (referred to as partition function form games) in which the

worth of each coalition depends not only on the coalition but also on the partition, i.e., the

entire structure of coexisting coalitions. Surprisingly, in the presence of externalities, there

may be certain coalition structures that are more efficient than the grand coalition, even in

superadditive settings. This problem has been highlighted by Hafalir (2007), who defined the

convexity of partition functions and proved that such convexity is sufficient for the efficiency

of the grand coalition in environments with externalities.

In this paper, we attempt to extend the results of Hafalir (2007). In our approach, we focus

on two types of externalities: positive externalities and negative externalities. Many games

describing economic situations are basically classified as characterized by the presence of either

positive or negative externalities.*2 On one hand, under positive externalities, each coalition

enjoys the benefits of a merger among other coalitions, and coalitions are therefore more likely

to cooperate with one another. On the other hand, under negative externalities, each coalition

is damaged by a connection among other coalitions. Such an environment is believed to be

more competitive. This difference in externalities yields an asymmetry of tendencies toward

the formation of the grand coalition. We will argue this subject more extensively in Section

3.

Moreover, it is important to note that efficiency does not necessarily mean the “stability”

of the grand coalition. In other words, as we discuss below, efficiency is not sufficient for the

non-emptiness of the core. The situation in which we have the efficient grand coalition and

the empty core can be considered as an analog of the “prisoners’ dilemma”: even if a Pareto

*1 Maskin (2003) proposed a solution that may dispose of some amount of the surplus obtained from the

grand coalition and is thus an important exception in this regard.
*2 Nevertheless, there is a class of environments in which externalities are neither positive nor negative.
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optimal outcome was temporarily achieved, some players might have an incentive to deviate

from it. In the presence of externalities, players attempting to deviate from the grand coalition

may consider various reactions of the other players and coalitions. This diversity of conjecture

yields many definitions of the core in partition function form. In this paper, we focus mainly

on two types of cores: the optimistic core and the pessimistic core. We expound upon this

topic in Section 4.

The remainder of this paper is organized as follows. We first recall the settings of partition

function form games in Section 2. Then, we introduce three basic conditions for games: the

efficiency of the grand coalition, superadditivity and convexity. In Section 3, we introduce our

two conditions and prove that they are sufficient for the efficiency of the grand coalition with

respect to positive and negative externalities. The results regarding the non-emptiness of the

optimistic core is presented in Section 4.

2 Preliminaries

2.1 Partition Function Form Games

Let N = {1, ..., n} be a set of players. A coalition of players is a subset of the player set, i.e.,

S ⊆ N . For any coalition S, |S| denotes the number of players in S. A partition of the player

set N is defined by P = {S1, ..., Sh}, where 1 ≤ h ≤ n, Si ∩ Sj = ∅ for i, j = 1, ..., h (i ̸= j),

and
∪h

i=1 Si = N . Let Π be the set of all partitions of N . For any partition P, we denote

by |P| the number of coalitions in P. We define an embedded coalition by (S,P), satisfying

S ∈ P. The set of all embedded coalitions L is given by L = {(S,P) ∈ 2N × Π | S ∈ P}.
A partition function v is a function that assigns a real number to each embedded coalition,

v : L → R. By convention, ∅ ∈ P and v(∅,P) = 0 for any partition P. Let (N, v) denote a

partition function form game.

2.2 Efficiency

As discussed briefly in Section 1, this paper aims to clarify the sufficient conditions for the

efficiency of the grand coalition. We define the efficiency of the grand coalition as follows.

Definition 2.1. A partition function v satisfies the efficiency of the grand coalition (EFF) if

for any partition P of N ,

v(N, {N}) ≥
∑
S∈P

v(S,P).

In words, we can consider the summation of each coalition’s surplus for any partition. The

efficiency of the grand coalition describes that situation in which the surplus of the grand

coalition is greater than this summation of each partition.

3



2.3 Superadditivity

In the presence of externalities, the definition of superadditivity is no longer unique. We

first introduce the definition that is employed by Bloch and van den Nouweland (2014) and

Hafalir (2007).

Definition 2.2. A partition function v satisfies superadditivity if for any S, T ⊆ N with

S ∩ T = ∅ and any partition Q of N \ (S ∪ T ),

v(S ∪ T, {(S ∪ T )} ∪ Q) ≥ v(S, {S, T} ∪ Q) + v(T, {S, T} ∪ Q).

It is commonly known that superadditivity yields the efficient grand coalition in the absence

of externalities. However, in games with externalities, superadditivity fails to accomplish the

efficiency of the grand coalition, which is illustrated in the following example.

Example 2.3. This example was introduced by Hafalir (2007). Let N = {1, 2, 3}. Consider

the following symmetric partition function:

v(N, {N}) = 11;

v({i}, {{i}, {j, k}}) = 1 and v({j, k}, {{i}, {j, k}}) = 9;

v({i}, {{1}, {2}, {3}}) = 4 for any i ∈ N.

This game satisfies superadditivity. However, the grand coalition is not efficient because we

have v(N, {N}) = 11 < 12 =
∑3

i=1 v({i}, {{1}, {2}, {3}}).

2.4 Convexity

Because of the difficulty described in Example 2.3, Hafalir (2007) defined convexity in par-

tition function form and showed that convexity implies the efficiency of the grand coalition.

Definition 2.4. A partition function v satisfies convexity if for any S, T ⊆ N , and any

partition Q of N \ (S ∪ T ),

v(S ∪ T, {(S ∪ T )} ∪ Q) + v(S ∩ T, {(S ∩ T ), S \ T, T \ S} ∪ Q)

≥ v(S, {S, T \ S} ∪ Q) + v(T, {T, S \ T} ∪ Q).

Moreover, Hafalir (2007) examined another extension of convexity to partition functions as

follows.*3

*3 See Appendix A in Hafalir (2007) for detailed discussions.
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Definition 2.5. A partition function v satisfies weak convexity if for any S, T ⊆ N with

|S \ T | = |T \ S| ≤ 1, and any partition Q of N \ (S ∪ T ),

v(S ∪ T, {(S ∪ T )} ∪ Q) + v(S ∩ T, {(S ∩ T ), S \ T, T \ S} ∪ Q)

≥ v(S, {S, T \ S} ∪ Q) + v(T, {T, S \ T} ∪ Q).

Notably, in games with no externalities, it is commonly known that weak convexity is equiv-

alent to convexity. In contrast, under externalities, weak convexity becomes literally weaker

than convexity. As the following example illustrates, weak convexity does not achieve the

efficiency of the grand coalition.

Example 2.6. This example was introduced by Hafalir (2007). Consider the following 5-

player game: N = {1, 2, 3, 4, 5} = {i, j, k, l,m};

v(N, {N}) = 25;

v({i, j, k, l}, {{i, j, k, l}, {m}}) = 18 and v({m}, {{i, j, k, l}, {m}}) = 3;

v({i, j, k}, {{i, j, k}, {l,m}}) = 17 and v({l,m}, {{i, j, k}, {l,m}}) = 6;

v({i, j, k}, {{i, j, k}, {l}, {m}}) = 12 and v({l}, {{i, j, k}, {l}, {m}}) = 3;

v({i, j}, {{i, j}, {k, l}, {m}}) = 9 and v({m}, {{i, j}, {k, l}, {m}}) = 8;

v({i, j}, {{i, j}, {k}, {l}, {m}}) = 7 and v({k}, {{i, j}, {k}, {l}, {m}}) = 3;

v({i}, {{1}, {2}, {3}, {4}, {5}}) = 3 for any i ∈ N.

This game satisfies weak convexity but violates the efficiency of the grand coalition because

we have

v(N, {N}) = 25 < 26 = 9 + 9 + 8

= v({i, j}, {{i, j}, {k, l}, {m}}) + v({k, l}, {{i, j}, {k, l}, {m}}) + v({m}, {{i, j}, {k, l}, {m}}).

Furthermore, this game is not convex because for S = {1, 2, 3, 4} and T = {3, 4, 5},

34 = v(S ∪ T, {S ∪ T}) + v(S ∩ T, {(S ∩ T ), S \ T, T \ S})
< v(S, {S, T \ S}) + v(T, {T, S \ T}) = 35.

3 Conditions for the Efficiency of the Grand Coalition

3.1 Environments with Externalities

In this section, we provide two new conditions (Definitions 3.2 and 3.4) to accomplish the

efficiency of the grand coalition. We aim to obtain efficiency by conditions weaker than

convexity. To this end, we focus on the properties of externalities. Externalities can be

classified as positive or negative. A partition function is said to have positive (negative)
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externalities when each coalition becomes better (worse) off whenever other coalitions combine.

Positive externalities and negative externalities are formally defined as follows.

A partition function v has positive externalities if for any mutually disjoint C, S, T ⊆ N

(C ̸= ∅, S ̸= ∅, T ̸= ∅), and any partition Q of N \ (S ∪ T ∪ C),

v(C, {C, (S ∪ T )} ∪ Q) > v(C, {C,S, T} ∪ Q).

Similarly, a partition function v has negative externalities if for any mutually disjoint C, S, T ⊆
N (C ̸= ∅, S ̸= ∅, T ̸= ∅) and any partition Q of N \ (S ∪ T ∪ C),

v(C, {C, (S ∪ T )} ∪ Q) < v(C, {C,S, T} ∪ Q).

In this paper, we follow the definitions of Hafalir (2007) and use the strict inequalities (>) and

(<), which can be replaced with (≥) and (≤), respectively, and the essentials of our results

do not change in these settings.

In the literature of cooperative games, several early works addressed certain economic sit-

uations in which externalities exist among coalitions. We can categorize the externalities as

either positive or negative. A leading example of such economic models with positive external-

ities is Cournot quantity competition in partition function form, which was initially introduced

by Ray and Vohra (1999). Other examples of positive externalities include the “public goods

games” studied by Yi (1997) and Ray and Vohra (1997) and the “tragedy of the commons” ex-

amined by Funaki and Yamato (1999). It might be argued that a competitive situation such as

a Cournot oligopoly should be compatible with negative—rather than positive—externalities.

This intuition is captured by Cournot competition with joint ventures studied by Bloch (1995)

and Yi (1998). Another example involving negative externalities includes “customs unions”

studied by Yi (1996).

3.2 Positive Externalities

In this subsection, we focus on games with positive externalities. First, by slightly changing

superadditivity given in Definition 2.2, we define a stronger condition.

Definition 3.1. A partition function v satisfies strong-superadditivity (strong-SA) if for any

mutually disjoint S, T, S′, T ′ ⊆ N such that S ̸= ∅, T ̸= ∅ and any P ∈ Π with S, T, S′, T ′ ∈ P,

we have

v(S ∪ T, {(S ∪ T ), (S′ ∪ T ′)} ∪ Q)

≥ v(S, {S, T, S′, T ′} ∪ Q) + v(T, {S, T, S′, T ′} ∪ Q),

where Q is the partition of N \ (S ∪ T ∪ S′ ∪ T ′) defined by Q = P \ {S, T, S′, T ′}.
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Strong-SA describes the situation in which two coalitions S′ and T ′ form their coalition (S′∪T ′)

in response to the first formation of coalition (S ∪ T ). In fact, strong-SA requires that the

merging coalitions S and T can benefit from any following merger of the other two coalitions

S′ and T ′. Note that S′ and T ′ may be empty and that strong-SA implies superadditivity in

both positive and negative externalities.

Next, we consider a variant of strong-SA in which responsive coalitions S′ and T ′ are re-

stricted to be nonempty. With this restriction, each partition requires at least four nonempty

coalitions: S, T, S′, T ′. The later part of the following definition covers those exceptional cases

in which the cardinality of a partition is two or three.

Definition 3.2. A partition function v satisfies quasi strong-superadditivity (QS-SA) if for

any mutually disjoint S, T, S′, T ′ ⊆ N such that S ̸= ∅, T ̸= ∅, S′ ̸= ∅, T ′ ̸= ∅ and any P ∈ Π

such that S, T, S′, T ′ ∈ P and |P| ≥ 4, we have

v(S ∪ T, {(S ∪ T ), (S′ ∪ T ′)} ∪ Q)

≥ v(S, {S, T, S′, T ′} ∪ Q) + v(T, {S, T, S′, T ′} ∪ Q),

where Q is the partition of N \ (S ∪ T ∪ S′ ∪ T ′) defined by Q = P \ {S, T, S′, T ′}; otherwise,
i.e., |P| = 2 or 3, for any nonempty S, T ∈ P with S ∩ T = ∅, we have

v(S ∪ T, {(S ∪ T )} ∪ Q′) ≥ v(S, {S, T} ∪ Q′) + v(T, {S, T} ∪ Q′),

where Q′ is the partition of N \ (S ∪ T ) defined by Q′ = P \ {S, T}.

Notably, in games under positive externalities, QS-SA is weaker than superadditivity because

a merger not only between S and T but also between S′ and T ′ is beneficial for S and

T . However, we show in the next subsection that QS-SA is not necessarily weaker than

superadditivity under negative externalities.

The following proposition posits that QS-SA can accomplish the efficiency of the grand

coalition.

Proposition 3.3. For any partition function v with positive externalities, if v satisfies QS-SA,

then v satisfies the efficiency of the grand coalition.

Proof. The proof is implemented by induction on the cardinality of partition P.

Induction hypothesis: For any partition P,

v(N, {N}) ≥
∑
S∈P

v(S,P).

Induction base: For |P| = 2, let P = {S, T}. From the definition (of the part of |P| ≤ 3) of

QS-SA, we have
v(N, {N}) ≥ v(S,P) + v(T,P).
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For |P| = 3, let P = {S, T, C}. By QS-SA, we have

v(S ∪ T, {(S ∪ T ), C}) ≥ v(S, {S, T, C}) + v(T, {S, T, C}).

As v has positive externalities, we obtain

v(C, {(S ∪ T ), C}) > v(C, {S, T, C}).

Using the result of |P| = 2, we obtain

v(N, {N}) ≥ v((S ∪ T ), {(S ∪ T ), C}) + v(C, {(S ∪ T ), C})
> v(S, {S, T, C}) + v(T, {S, T,C}) + v(C, {S, T,C}).

Induction proof: We assume that the induction hypothesis holds for |P| ≤ k − 1, and we

show that the induction hypothesis holds for |P| = k. Thus, we assume hereinafter that

|P| = k ≥ 4.

Take four coalitions: S, T, S′, T ′ ∈ P. Let Q denote the partition of N \ (S ∪ T ∪ S′ ∪ T ′)

such that Q = P \ {S, T, S′, T ′}. Let P ′ = {(S ∪ T ), (S′ ∪ T ′)} ∪ Q. By QS-SA, we have

v((S ∪ T ),P ′) ≥ v(S,P) + v(T,P), and

v((S′ ∪ T ′),P ′) ≥ v(S′,P) + v(T ′,P). (3.1)

As P \ {S, T, S′, T ′} = Q = P ′ \ {(S ∪ T ), (S′ ∪ T ′)}, for any C ∈ Q, v(C,P ′) > v(C,P) holds

under positive externalities. Therefore, we have
∑

C∈Q v(C,P ′) >
∑

C∈Q v(C,P). Thus, in

view of (3.1), we obtain ∑
C′∈P′

v(C ′,P ′) >
∑
C′∈P

v(C ′,P).

Since the cardinality of P ′ is k − 2, we have

v(N, {N}) ≥
∑
C∈P′

v(C,P ′) >
∑
C∈P

v(C,P).

This completes the induction proof.

The last strict inequality, (>), stems from the definition of positive externalities. Thus, it can

be replaced with a non-strict inequality (≥), by replacing (>) with (≥) in the definition of

positive externalities as well.

We note that, under positive externalities, convexity is excessively strong for the efficiency

of the grand coalition, and that superadditivity is sufficient for such efficiency. Proposition 3.3

shows that even QS-SA, which is weaker than superadditivity, is sufficient for the efficiency of

the grand coalition.

Now, let us examine another type of superadditivity. This is the second condition of our

main discussion.
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Definition 3.4. A partition function v satisfies optimistic-superadditivity (optimistic-SA) if

for any S, T ⊆ N with S ∩ T = ∅,

max
P∈Π:

(S∪T )∈P

v(S ∪ T,P) ≥ max
P′∈Π:
S∈P′

v(S,P ′) + max
P′′∈Π:
T∈P′′

v(T,P ′′).

The idea behind optimistic-SA is a reduction of partition function to coalition function. In

general, we can generate a coalition function from a partition function by fixing a partition of

outsiders for each coalition. Considering this transformation, a partition function v satisfies

optimistic-SA if and only if the “optimistically reduced coalition function, i.e., vopt(S) :=

maxP′∈Π:S∈P′ v(S,P ′) for any S ⊆ N ,” satisfies ordinary superadditivity in coalition function

form. As described in the following proposition, optimistic-SA accomplishes the efficiency of

the grand coalition.

Proposition 3.5. For any partition function v, if v satisfies optimistic-SA then v satisfies the

efficiency of the grand coalition.

Proof. For any partition P, we have

v(N, {N})−
∑
S∈P

v(S,P) ≥ v(N, {N})−
∑
S∈P

max
P′∈Π:
S∈P′

v(S,P ′)

 .

Since P is a partition of N , by the definition of optimistic-SA, we obtain

v(N, {N})−
∑
S∈P

max
P′∈Π:
S∈P′

v(S,P ′)

 ≥ 0.

Proposition 3.5 showed that optimistic-SA implies the efficiency of the grand coalition under

both positive and negative externalities;*4 meanwhile, the relationship with convexity varies

depending on the type of externalities. The following example illustrates that optimistic-SA

is not weaker than convexity.

Example 3.6. Consider the following 4-player game: N = {1, 2, 3, 4};

v(N, {N}) = 8;

v({i, j, k}, {{i, j, k}, {h}}) = 5.1 and v({h}, {{i, j, k}, {h}}) = 2 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k, h}}) = 3.5 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k}, {h}}) = 3 and v({k}, {{i, j}, {k}, {h}}) = 1.5 for {i, j, k, h} = N ;

v({i}, {{1}, {2}, {3}, {4}}) = 1 for i = 1, 2, 3, 4.

*4 Moreover, this proposition continues to hold when externalities are neither positive nor negative. How-

ever, “pessimistic-SA” defined in the same manner as Definition 3.4 fails to imply the efficiency of the

grand coalition.
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This game satisfies convexity while violating optimistic-SA because for any coalition S, the

optimistic value vopt(S) = maxP′∈Π:S∈P′ v(S,P ′) is determined as follows:

vopt(S) =


8 if |S| = 4
5.1 if |S| = 3
3.5 if |S| = 2
2 if |S| = 1

.

3.3 Negative Externalities

First, let us focus on QS-SA. The role of QS-SA under negative externalities is completely

different from that under positive externalities. The following example shows that QS-SA fails

to achieve efficiency in games with negative externalities.

Example 3.7. Consider the following 4-player game: N = {1, 2, 3, 4};

v(N, {N}) = 11;

v({i, j, k}, {{i, j, k}, {h}}) = 10.2 and v({h}, {{i, j, k}, {h}}) = 0 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k, h}}) = 5 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k}, {h}}) = 9.1 and v({k}, {{i, j}, {k}, {h}}) = 1 for {i, j, k, h} = N ;

v({i}, {{1}, {2}, {3}, {4}}) = 2 for i = 1, 2, 3, 4.

This game satisfies QS-SA. However, the grand coalition is not efficient because for partition

{{i, j}, {k}, {h}},∑
S∈{{i,j},{k},{h}}

v(S, {{i, j}, {k}, {h}}) = 9.1 + 1 + 1 > 11 = v(N, {N}).

Notably, Example 3.7 is not trivial, as QS-SA is not weaker than superadditivity under negative

externalities,*5 which can be checked in the following Example 3.8. Furthermore, Example

3.8 simultaneously shows that QS-SA is not weaker than convexity.

Example 3.8. Consider the following 4-player game: N = {1, 2, 3, 4};

v(N, {N}) = 60;

v({i, j, k}, {{i, j, k}, {h}}) = 45 and v({h}, {{i, j, k}, {h}}) = 13 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k, h}}) = 29 for {i, j, k, h} = N ;

v({i, j}, {{i, j}, {k}, {h}}) = 30 and v({k}, {{i, j}, {k}, {h}}) = 14 for {i, j, k, h} = N ;

v({i}, {{1}, {2}, {3}, {4}}) = 15 for i = 1, 2, 3, 4.

*5 Superadditivity and even strong-SA are not sufficient for the efficiency of the grand coalition.
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This game satisfies convexities and, hence, superadditivity. However, it violates QS-SA be-

cause for i, j, k, h with {i, j, k, h} = N , we have

v({i, j}, {{i, j}, {k, h}}) = 29 < 30 = 15 + 15

= v({i}, {{1}, {2}, {3}, {4}}) + v({j}, {{1}, {2}, {3}, {4}}).

Next, we analyze optimistic-SA. As described by Proposition 3.5, optimistic-SA achieves

the efficiency of the grand coalition, regardless of the type of externalities, which raises an-

other question regarding the relationship between convexity and optimistic-SA. The answer,

under negative externalities, is as follows: convexity implies optimistic-SA. This result vividly

contrasts with that of positive externalities. The following proposition states that even weak

convexity, which is always weaker than convexity, implies optimistic-SA under negative exter-

nalities.

Proposition 3.9. For any partition function v with negative externalities, if v satisfies weak

convexity, then v satisfies optimistic-SA.

Proof. Let I(S) = {{i1}, ..., {i|S|}} denote the partition of S to singletons. As the game v

has negative externalities, it suffices to show that for any nonempty S ⊆ N and any T1, T2 ⊆ S

with T1 ∩ T2 = ∅, T1 ∪ T2 = S, T1 ̸= ∅, T2 ̸= ∅,

v(S, {S} ∪ I(N \ S)) ≥ v(T1, {T1} ∪ I(N \ T1)) + v(T2, {T2} ∪ I(N \ T2)).

To maintain the clarity of our notation, define vI(S) = v(S, {S} ∪ I(N \ S)) for any S ⊆ N .

With this notation, the inequality above can be written as follows:

vI(S) ≥ vI(T1) + vI(T2). (3.2)

The proof is implemented by induction on the cardinality of coalition S. The induction

hypothesis is developed by (3.2).

Induction base: For |S| = 2, let S = {i, j}. By weak convexity, we obtain

vI({i, j}) ≥ vI({i}) + vI({j}).

For |S| = 3, let S = {i, j, h}. By weak convexity, we have

vI({i, j, h}) ≥ vI({i, j})− vI({j}) + vI({j, h})
≥ vI({i}) + vI({j, h}),

where the last inequality holds by the result of |S| = 2.

Induction proof: Assume that the induction hypothesis is true for any |S| ≤ k−1. We show

that it is true for |S| = k as well. For any T1, T2 ⊆ S such that T1 ∩ T2 = ∅, T1 ∪ T2 = S,

T1 ̸= ∅, T2 ̸= ∅, let i1 ∈ T1 and j1 ∈ T2. By weak convexity, we have

vI(S) ≥ vI(S \ {i1}) + vI(S \ {j1})− vI(S \ {i1, j1}). (3.3)
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First, we focus on S \ {i1} in (3.3). If T1 = {i1}, inequality (3.3) can be written as follows:

vI(S) ≥ vI(T2) + vI(S \ {j1})− vI(S \ {i1, j1}).

We note that the cardinality of S \ {j1} is k − 1. Because the inequality vI(S \ {j1}) ≥
vI({i1}) + vI(S \ {i1, j1}) holds by induction hypothesis, we obtain

vI(S) ≥ vI(T2) + vI({i1})
= vI(T2) + vI(T1).

We now assume |T1| ≥ 2. If there is a player i2 ∈ T1 such that i2 ̸= i1, then, by weak convexity,

we have

vI(S \ {i1}) ≥ vI(S \ {i1, i2}) + vI(S \ {i1, j1})− vI(S \ {i1, i2, j1}).

Similarly, if there is a player i3 ∈ T1, such that i3 ̸= i2 and i3 ̸= i1, then we have

vI(S \ {i1, i2}) ≥ vI(S \ {i1, i2, i3}) + vI(S \ {i1, i2, j1})− vI(S \ {i1, i2, i3, j1}).

We can iterate this process exactly |T1| − 1 (= |T1 \ {i1}|) times.

We can apply this iteration to S \ {j1} in (3.3) as well.*6 As a result of both iterations, we

obtain the following (in)equalities from (3.3):

vI(S) ≥ vI(S \ {i1}) + vI(S \ {j1})− vI(S \ {i1, j1})
= vI(T1) + vI(T2)− vI(S \ {i1, j1})

+

|T1|∑
l=2

[
vI(S \ {i1, ..., il−1, j1})− vI(S \ {i1, ..., il, j1})

]
+

|T2|∑
l′=2

[
vI(S \ {j1, ..., jl′−1, i1})− vI(S \ {j1, ..., jl′ , i1})

]
= vI(T1) + vI(T2)− vI(S \ {i1, j1})

+vI(S \ {i1, j1})− vI(S \ {i1, ..., i|T1|, j1}) (3.4)

+vI(S \ {j1, i1})− vI(S \ {j1, ..., j|T2|, i1}).

Since {i1, ..., i|T1|} = T1 and {j1, ..., j|T2|} = T2, (3.4) can be written as follows:

vI(T1) + vI(T2) + vI(S \ {i1, j1})− vI(S \ (T1 ∪ {j1}))− vI(S \ (T2 ∪ {i1}))
≥ vI(T1) + vI(T2).

where the inequality holds by the induction hypothesis because the cardinality of S \ {i1, j1}
equals k − 2. This completes the induction proof.

As the result of our exploration, we can summarize the relationship of our conditions with

convexity and the efficiency of the grand coalition in Table 1.

*6 Thus, analogous to T1, we consider the case of |T2| ≥ 2 hereafter.

12



Table 1 Relationship among QS-SA, optimistic-SA, efficiency and convexity

positive externalities negative externalities

convexity ⇒ QS-SA Yes -

convexity ⇒ optimistic-SA - Yes

QS-SA ⇒ EFF Yes -

optimistic-SA⇒ EFF Yes Yes

Furthermore, the implications of relations involving superadditivity are illustrated in Figure

1. It might be questioned whether Definition 2.2 is an appropriate extension of superadditivity

to partition functions. In fact, another definition of superadditivity is proposed by de Clippel

and Serrano (2008), who consider a stronger definition than Definition 2.2 and offer the fol-

lowing definition: for any mutually disjoint S1, ..., Sk ⊆ N (1 ≤ k ≤ n) and any partition Q
of N \ (∪k

j=1Sj), we have

v
(
∪k
j=1Sj , {(∪k

j=1Sj)} ∪ Q
)
≥

k∑
j=1

v(Sj , {S1, ..., Sk} ∪ Q). (3.5)

Clearly, condition (3.5) accomplishes the efficiency of the grand coalition because the grand

coalition can be taken as N as ∪k
j=1Sj with k = 1. In the absence of externalities, both

definitions coincide. Notably, in Figure 1, condition (3.5) is located between superadditivity

(of Definition 2.2) and convexity under both types of externalities. In addition, optimistic-SA

is not weaker than condition (3.5): it is possible to find a game satisfying (3.5) and violating

optimistic-SA under both types of externalities.

4 Non-emptiness of the Core

In the presence of externalities, players attempting to deviate from the grand coalition

can anticipate a variety of reactions from the other players and coalitions. This diversity of

anticipation yields many definitions of the core in partition function form. In this paper, we

focus mainly on a contrastive pair of core(s): the optimistic core and the pessimistic core.

Definition 4.1. Let x be a payoff vector in RN . The optimistic-core is a set of payoff vectors

such that for any coalition S ⊆ N ,∑
j∈S

xj ≥ max
P′∈Π:S∈P′

v(S,P ′), and
∑
j∈N

xj = v(N, {N}).

Similarly, the pessimistic-core is a set of payoff vectors such that for any coalition S ⊆ N ,∑
j∈S

xj ≥ min
P′∈Π:S∈P′

v(S,P ′), and
∑
j∈N

xj = v(N, {N}).
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Figure 1 Conditions for the efficiency of the grand coalition

It is commonly known that the optimistic core is the smallest of all types of cores, whereas the

pessimistic core is the largest.*7 On one hand, under optimistic views, players (or, a coalition)

find it easy to deviate from their original affiliation because they expect the best reaction from

the other players, i.e., argmaxP′:S∈P′ v(S,P ′). On the other hand, under pessimistic views,

players are less likely to deviate because they anticipate the worst case from other players, i.e.,

argminP′:S∈P′ v(S,P ′). Unfortunately, neither optimistic-SA nor QS-SA discussed in Section

3 guarantee the non-emptiness of each type of core. Therefore, we require another condition

that is stronger than both of these conditions and simultaneously weaker than convexity.

Now, we claim that weak convexity is sufficient for both the efficiency of the grand coalition

and the non-emptiness of the core. As discussed in Example 2.6, weak convexity does not

always achieve the efficiency of the grand coalition. However, weak convexity does achieve

efficiency by focusing on negative externalities.

Proposition 4.2. For any partition function v with negative externalities, if v satisfies weak

convexity, then v satisfies the efficiency of the grand coalition.

*7 Abe and Funaki (2015) generalized the Bondareva-Shapley condition for partition function form games.

14



Proof. The proof follows from Proposition 3.9 and Proposition 3.5.

Notably, weak convexity has not been considered as a candidate for the sufficient condition of

the nonempty core because of the difficulty illustrated in Example 2.6. However, Proposition

4.2 states that weak convexity can become a candidate if we focus on negative externalities.

The following proposition shows the truth of this conjecture.

Proposition 4.3. For any partition function v with negative externalities, if v satisfies weak

convexity, then the optimistic core is nonempty.

Proof. The basic approach behind this proof is similar to Hafalir (2007). However, in this

proof, we restrict our attention to weak convexity and games with negative externalities be-

cause of Proposition 4.2.

For any S ⊆ N , let I(S) denote the partition of S to singletons. Since v satisfies weak

convexity, for any S, T ⊆ N with |S \ T | = |T \ S| = 1, we have

v(S ∪ T, {S ∪ T} ∪ I(N \ (S ∪ T ))) + v(S ∩ T, {S ∩ T, S \ T, T \ S} ∪ I(N \ (S ∪ T )))

≥ v(S, {S, T \ S} ∪ I(N \ (S ∪ T ))) + v(T, {T, S \ T} ∪ I(N \ (S ∪ T ))). (4.1)

For notational simplicity, define vI(S) = v(S, {S}∪I(N \S)). In view of |S \T | = |T \S| = 1,

we can rewrite (4.1) as follows:

vI(S ∪ T ) + vI(S ∩ T ) ≥ vI(S) + vI(T ).

Now, we can consider vI as a coalition function. Because weak convexity is equivalent

to convexity for coalition functions, vI is convex in the sense of a coalition function game.

Let us take a payoff vector x ∈ RN such that for any i ∈ N and any S ⊆ N \ {i}, xi =

vI(S ∪ {i}) − vI(S). By the convexity of coalition function vI , the vector x is in the core

of the coalition function vI , i.e.,
∑

j∈S xj ≥ vI(S) for any S ⊆ N and
∑

j∈N xj = vI(N).

Under the definition of vI(S) and negative externalities, we have

vI(S) = v(S, {S} ∪ I(N \ S)) = max
P′∈Π:S∈P′

v(S,P ′), (4.2)

which implies that x is in the optimistic core of partition function v.

Corollary 4.4. For any game v with positive externalities, if v is weak convexity then the

pessimistic core is nonempty.

Proof. The first half of this proof is the same as Proposition 4.3. In games with positive

externalities, we have vI(S) = v(S, {S} ∪ I(N \S)) = minP′∈Π:S∈P′ v(S,P ′), instead of (4.2).

Hence, x is in the pessimistic core.

If externalities are positive, we cannot obtain the parallel result of Proposition 4.2, and the

grand coalition can be inefficient even when weak convexity is satisfied. Bloch and van den
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Nouweland (2014) discussed the case in which some partitions are more efficient than the

grand coalition and then introduced the notion of “block deviation”, i.e., a deviating coalition

does not split after the deviation. It is possible to define each type of core as the set of payoff

vectors that are not block-deviated via any coalition. For the formal definition of the core

based on the deviation, see Abe and Funaki (2015).

Surprisingly, according to Corollary 4.4, even when the grand coalition is not efficient,

a payoff distribution of the grand coalition may belong to the pessimistic core. The next

example describes the case.

Example 4.5. Let N = {1, 2, 3}. Consider a partition function v defined as follows:

v(N, {N}) = 5;

v({i}, {{i}, {j, k}}) = 4 and v({j, k}, {{i}, {j, k}}) = 2 for {i, j, k} = N ;

v({i}, {{1}, {2}, {3}}) = 0 for i = 1, 2, 3.

In this game, the grand coalition is not efficient because

v({i}, {{i}, {j, k}}) + v({j, k}, {{i}, {j, k}}) = 4 + 2 > 5 = v(N, {N}).

However, assuming block deviation, payoff vector (53 ,
5
3 ,

5
3 ) is in the pessimistic core of this

game. Thus, any individual player does not deviate from (53 ,
5
3 ,

5
3 ) because each player con-

siders the worst case: min{v({i}, {{i}, {j, k}}), v({i}, {{1}, {2}, {3}})} = min{4, 0}. Without

assuming block deviation, the payoff vector is out of the pessimistic core (because the grand

coalition itself can deviate from {N} by splitting into {{i}, {j, k}}) and then obtains, for

example, payoff (2, 2, 2).

In contrast to the pessimistic core, the optimistic core must become empty whenever the

grand coalition is not efficient. The following proposition proves this fact.

Proposition 4.6. If the optimistic core is nonempty, then v is the efficiency of the grand

coalition.

Proof. For any partition P, we have

v(N, {N})−
∑
S∈P

v(S,P) ≥ v(N, {N})−
∑
S∈P

max
P′∈Π:
S∈P′

v(S,P ′)

 .
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Because a payoff vector x exists in the optimistic core defined as Definition 4.1, we obtain

v(N, {N})−
∑
S∈P

max
P′∈Π:
S∈P′

v(S,P ′)

 =
∑
j∈N

xj −
∑
S∈P

max
P′∈Π:
S∈P′

v(S,P ′)


=

∑
S∈P

∑
j∈S

xj − max
P′∈Π:
S∈P′

v(S,P ′)


≥ 0.

The results of this section are summarized in Table 2.

Table 2 The relationship between weak-convexity and two types of cores

positive externalities negative externalities

weak-convexity ⇒ optimistic-core ̸= ∅ - Yes

weak-convexity ⇒ pessimistic-core ̸= ∅ Yes Yes

weak-convexity ⇒ EFF - Yes

5 Concluding Remarks

In this paper, we used inequalities to define both the optimistic core and the pessimistic core

(see Definition 4.1). However, in the general field of cooperative game theory, the core is often

defined as the set of payoff vectors that are not dominated by any coalition (see, for example,

Abe and Funaki (2015) for the formal definition in partition function form games). We call

the former the inequality core and the latter the domination core. Then, as a general rule,

the inequality core always becomes a subset of the domination core. It might be possible that

the “gap” between them matters. We note that the gap does not arise in the class we have

analyzed. To see this, consider the following condition: for any nonempty coalition S ⊆ N ,

v(N, {N}) ≥ v(S,P∗) + v({is+1},P∗) + ...+ v({in},P∗), (5.1)

where P∗ = {S, {is+1}, ..., {in}}. The condition (5.1) can be seen as a generalization of zero

monotonicity. It is clear that the domination core thus become smaller than the inequality

core if and only if (5.1) holds and that the efficiency of the grand coalition implies (5.1). Thus,

the gap is eliminated in the class of games considered in this paper.

Furthermore, we considered the grand coalition as the coalition structure that is the most

efficient. However, in some environments, another partition may possibly be the most efficient
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coalition structure. To analyze the conditions of such cases, we must introduce the notion of

block deviation and splitting deviation more formally.
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