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1 Introduction

Amid major central banks’ purchases of longer-term government bonds under uncon-

ventional monetary policy with possible bond sales at the exit stage, there is growing

interest in the role of supply and the maturity structure of government bonds in their

yields and excess returns. How are supply factors related to yields and excess returns

in a zero-lower bound (ZLB) environment compared with a normal environment?

This question is of particular importance for Japan, a country in which government

debt is well above 200 percent of GDP–mostly in the form of Japanese government

bonds (JGBs)–with potentially high vulnerability to large yield movements in the JGB

markets. In Japan, a “preferred habitat” motive (Vayanos and Vila, 2009) in the JGB

markets appears to be strong for the following reasons: (i) the Bank of Japan (BoJ) has

increased the duration of its long-term JGB purchases under its quantitative-qualitative

easing (QQE) since April 2013; (ii) due to the increased and large presence of insurance

companies and pension funds in the JGB markets,1 supply factors can affect yield curves

regardless of monetary policy.

To date, relatively few studies, which are predominantly empirical, have examined

the effect of supply and maturity structure of JGBs on bond yields and expected returns.

Oda and Ueda (2007), an earlier study that analyzes up to the quantitative easing period

of 2001-2006, find that the BoJ’s purchases of JGBs have no statistically significant effect

on term premium.2 More recent studies after the introduction of the QQE emphasize

more on the effect of maturity structure of JGBs on bond yields–these studies generally

find positive bond-supply effects on long-term interest rates but differ in the ways that

they construct bond supply measures and in their empirical specifications. Iwata (2014)

1Related statistics and figures are extensively discussed, for example, by Fukunaga, Kato, and Koeda

(2015).
2During the quantitative easing period from 2001 to 2006, the BoJ purchased JGBs (and other

non-monetary assets) to meet its current-account balance operating target (for more description, see

for example, Ueda, 2012). These JGB purchases, however, did not have an explicit duration target.

The average maturity of JGBs held by the BoJ actually declined during this period (McCauley and

Ueda, 2009).
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applies the regression approach of Chadha, Turner, and Zampolli (2013) to estimate

the supply effect on five-year forward ten-year yield. The author uses a measure of the

average maturity of JGBs held outside the BoJ as the bond supply measure. Fukunaga,

Kato, and Koeda (2015) estimate supply-factor effects on term spreads using two types

of empirical specifications: single-equation regression and model-based specifications,

which are related to the work of Greenwood and Vayanos (2014)3 and Hamilton and

Wu (2012a, henceforth HW), respectively. Furthermore, Fukunaga, Kato, and Koeda

take into account insurance companies and pension funds in addition to the BoJ as

preferred-habitat investors and construct the corresponding supply measures.

Recently, following the seminal work of Vayanos and Vila (2009),4 there is a develop-

ment of term-structure models with preferred-habitat investors and arbitrageurs where

supply factors are explicitly modeled in an arbitrage-free framework. These models vary

in how preferred habitat investors’ bond supply or demand is modeled. HW assume that

preferred-habitat investors’ specific maturity of bond supply depends linearly on the cor-

responding bond yield; Greenwood and Vayanos (2014) assume that preferred-habitat

investors’ demand is driven by a stochastic demand factor that follows the Ornstein—

Uhlenbeck process; Fan, Li, and Zhou (2013), seeking to explain Chinese bond markets,

assume that preferred-habitat investors’ demand depends on official lending rates. Li

and Wei (2013) introduce preferred-habitat investors’ supply factors as additional yield-

curve factors with the restrictions that conventional yield-curve factors do not depend

on past supply factors, and vice versa. They also introduce an agency mortgage-backed

securities supply factor, in addition to a Treasury supply factor, to examine the effects

of the Federal Reserve’s large-scale asset purchase programs. Kaminska, Vayanos, and

Zinna (2011) identify foreign central banks as the primary preferred habitat for the US

investors.

We estimate a discrete-time version of Vayanos and Vila’s (2009) preferred habitat

term-structure model using JGB data. Our model follows that of HW because their

3Funayama (2014) applies the regression approach of Greenwood and Vayanos (2014) using the

Ministry of Finance’s net marketable bond issuance as a supply measure.
4For a discussion of Vayanos and Vila (2009) in the context of unconventional monetary policy, see

for example, Joyce, Miles, Scott, and Vayanos (2012).
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model of two regimes–the normal regime (in the absence of the ZLB constraint) and

the ZLB regime (at the ZLB)–can address differences between yield curve properties at

the ZLB and those in normal times in Japan in a tractable way.5 We extend HW’s model

by (i) allowing the coefficients in yield-curve factor dynamics as well as the prices of risk

to change at the ZLB to allow for greater model flexibility in addressing differences

in yield curve properties across regimes, (ii) using latent factors instead of observable

factors to improve the model’s fit to the data, (iii) writing out arbitrageurs’ portfolio

optimization problem at the ZLB, solving for the bond market equilibrium price, and

(iv) performing estimations using JGB data.

Since models of the Vayanos and Vila (2009) type shed light on the relations between

supply factors and bond risk premiums (or excess returns),6 we examine the extent

to which risk premiums must adjust for arbitrageurs to fully absorb preferred-habitat

investors’ bond supply shifts under each regime. As a benchmark, we assume that the

required adjustment for arbitrageurs is to sell long-term (e.g., 10- or 20-years) bonds and

buy short-term (e.g., 1-year) bonds by one percent share of their total holdings under

the ZLB regime, while we consider the opposite transaction under the normal regime.

The estimated results indicate that if the degree of arbitrageurs’ risk aversion were the

same as that calibrated for the US by HW,7 bond risk premium (one-month holding

period excess returns at an annualized rate) would decrease by 1.5 basis points for 10-

year bonds and 6 basis points for 20-year bonds, with little change in the short-term

bond risk premiums under the ZLB regime; on the other hand, they would increase by

7 basis points and 24 basis points respectively under the normal regime. The higher

sensitivity of bond risk premiums to supply factors in the normal regime stems from

5Their model with regime shifts addresses nonlinearity that arises at a ZLB within the tractable

affine framework. For a discussion beyond the affine framework on the performance of different families

of term structure models that enforce a ZLB, see for example, Singleton and Kim (2012) and Ichiue

and Ueno (2015).
6Excess returns are the standard measure for bond risk premiums in the term-structure literature

(Cochrane and Piazzesi, 2005).
7It appears that the degree of arbitrageurs’ risk aversion for JGB markets can take on a similar or

even higher value than HW’s calibrated value (e.g., Fukunaga, Kato and Koeda (2015)), even though

we use lower-frequency data than HW (monthly rather than weekly data) to estimate our model.
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the higher volatilities of yield-curve factors and the greater responsiveness of yields to

yield-curve factors. The model-implied risk-premium changes, however, multiply with

the degree of arbitrageurs’ risk aversion, which appears to swing over time in Japan.

The rest of the paper is organized as follows. Section 2 describes the model. Section

3 discusses the Japanese authorities’ (the Ministry of Finance (MoF) and the BoJ)

bond-by-bond holding data and how the data is related to the net bond demand of

arbitrageurs. Section 4 explains the estimation strategy used and describes estimated

results. Section 5 concludes.

2 The model

Following Vayanos and Vila (2009), we assume that there are two types of agents in

the government bond markets: preferred-habitat investors and arbitrageurs. Arbi-

trageurs maximize the mean-variance expected returns on their government bond port-

folio. Preferred-habitat investors prefer to hold particular maturities of government

bonds. The bond market equilibrium price is determined by equating arbitrageurs’ net

demand and preferred habitat investors’ net supply for different maturities of bonds.

Specifically, our model extends HW by (i) allowing the coefficients in yield-curve

factor dynamics as well as the prices of risk to change at the ZLB to allow greater

model flexibility. For notational consistency, we put a superscript of “1” on the normal-

time model coefficients and a superscript of “0” on the ZLB regime model coefficients,

except for transition probabilities; (ii) using latent factors instead of observable factors to

improve model fit to the data; and (iii) writing out arbitrageurs’ portfolio optimization

problem at the ZLB solving for the bond market equilibrium price.

2.1 The set up and normal-time bond pricing

Bond pricing in “normal” times (in the absence of the ZLB) follows the same specification

as in HW. HW define the arbitrageurs’ rate of return from period t to period t + 1 on
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their portfolio (rt,t+1) by

rt,t+1 =

NX
n=1

zntrn,t,t+1, (1)

where znt is the fraction of their portfolio in bonds of maturity n and rn,t,t+1 is the

holding-period return from period t to t + 1 on n-period bonds. Because arbitrageurs

are assumed to care only about the mean and variance of rt,t+1, their optimization

problem is given by

max
z1t,...,zNt

{E (rt,t+1|ft)− (γ/2)V ar (rt,t+1|ft)} , s.t.
NX
n=1

znt = 1, (2)

where γ captures arbitrageurs’ risk aversion and ft is the 3× 1 vector of pricing factors
assumed to follow a VAR (1) process with normalization that gives the identity matrix

Σ1 and a 3× 1 vector of zeros c1.

ft+1 = c
1 +Φ1ft +Σ1ut+1,

The preferred habitat’s net supply of bonds relative to arbitrageurs’ net wealth (xnt)

is assumed to be

xnt ≡ ξ1t,n − α1nyt,n, for n = 1, ...N , where ξ1t,n = ξ1n + θ
10
n ft, (3)

where yt,n is the log yield for n-period bond in period t. The risk-free one period rate

(yt,1) is assumed to follow an affine function of the yield-curve factors

y1t,1 = δ10 + δ
1
1ft.

HW show that at the bond market equilibrium (znt = xnt for n = 1, ..., N), the

n-period bond price approximately follows the standard affine term-structure model,

P 1t,n = exp
¡
ā1n + b̄

1
nft
¢
, where ā1n and b̄

1
n are pricing coefficients

8 that have the usual

recursive structure.

2.2 Bond pricing at the ZLB

Arbitrageurs now face two types of regimes: the ZLB regime where the ZLB binds and

the normal regime where the ZLB does not bind (denoted by s = 0 and s = 1 re-

spectively). They maximize mean-variance expected returns weighted by the transition

8The corresponding log yield equation is given by y1t,n = (−ā1n/n) + (−b̄1n/n)ft.

6



probability that the ZLB will continue to bind in the next period (π00) or that it will be

lifted (π10). These transition probabilities (πi0 for i = 0, 1) are assumed to be exogenous

and constant and add up to 1 (
X
i=0,1

πi0 = 1). The arbitrageurs’ optimization problem at

the ZLB can be given as

max
z1t,...,zNt

X
i=0,1

πi0 [E (rt,t+1|st+1 = i, st = 0, ft)− (γ/2)V ar (rt,t+1|st+1 = i, st = 0, ft)] ,

(4)

subject to
NX
n=1

znt = 1, (5)

where ft are the pricing factors assumed to follow a VAR (1) process.

ft+1 = c
i +Φift +Σiut+1. (6)

For parsimonious purpose, we assume that Σ0 is a diagonal matrix. Using the FOCs

of the above optimization problem, we can approximately solve for the arbitrageurs’

demand equation, zt = (z2t, ..., zNt)
0
(see Appendix A for derivation). zt depends on ex-

pected excess one-period holding period returns on different maturities of bonds. Given

zt, the arbitrageurs’ demand for short-term bonds (z1t) can be derived from eq. (5).

The preferred habitat’s net supply of bonds (xnt) is modeled in the same manner as

the normal-time model except that the supply-equation coefficients are allowed to take

different values at the ZLB. The risk-free one period rate (y1t) is also modeled in the

same manner as the normal-time model except that we impose zero restrictions on the

coefficients for factors (δ01) as in HW,

y0t,1 = δ00 + δ
0
1ft, δ

0
0 ' 0 and δ01 = [0, 0, 0].

At the bond market equilibrium, the arbitrageurs’ net demand should equal the pre-

ferred habitats’ net supply. Appendix A shows that by equating the demand and supply

functions for the n-period bond, the equilibrium bond prices (P 0t,n for n = 1, ..., N,) can
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be derived as follows.

p0t,n = ā0n + b̄
0
nft, (7)

ā0n = ā01 +
X
i=0,1

πi0

⎡⎢⎣āin−1 + b̄in−1©ci−Σiλi
ª| {z }

≡cQ

+ (1/2) b̄in−1Σ
iΣi0b̄i0n−1

⎤⎥⎦ , (8)

b̄0n =
X
i=0,1

πi0b̄
i
n−1
©
Φi−ΣiΛi

ª| {z }
≡ΦQ

+ b̄01, (9)

where p0t,n = ln
¡
P 0t,n

¢
, ā0n and b̄

0
n are pricing coefficients

9 at the ZLB. cQ and ΦQ are

factor-dynamics coefficients under the risk-neutral (Q) measure, and are, as in HW,

assumed to be the same across regimes. The prices of risk coefficients are expressed as

λi = γΣi0
NX
n=2

b̄i0n−1
¡
ξ0n +

¡
α0n/n

¢
ā0n
¢
, Λi = γΣi0

NX
n=2

b̄i0n−1
¡
ϑ0n +

¡
α0n/n

¢
b̄0n
¢
.

Thus, in equilibrium, bond prices at the ZLB follow the standard affine term structure

model with regime shifts. Furthermore, it can be shown (see Appendix A) that the prices

of risk can be expressed as a function of zt,

λit ≡ λi +Λift = γΣi0
NX
j=2

zjtb̄
i0
j−1. (10)

2.3 Risk premium

At the bond market equilibrium, the model-implied one-period holding-period excess

log return under each regime can be expressed as follows. Under the normal regime

Et
¡
rx1t+1,n

¢ ≡ Et ¡p1t+1,n−1¢− p1t,n − y11,t = C1 + γb̄1n−1Σ
1Σ10

NX
j=2

zjtb̄
10
j−1. (11)

Under the ZLB regime,

Et
¡
rx0t+1,n

¢ ≡ ÃX
i=0,1

πi0p
i
t+1,n−1

!
− p0t,n − y01,t = C0 + γ

X
i=0,1

πi0b̄
i
n−1Σ

iΣi0
NX
j=2

zjtb̄
i0
j−1.

(12)

9The corresponding log yield equation is given by y0t,n =
¡−ā0n/n¢+ ¡−b̄0n/n¢ ft.
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C1 and C0 are constant.10 The second terms on the RHS in eqs. (11) - (12) can be

further rewritten as an affine function of yield-curve factors by using eq. (3) and the

market clearing condition.

3 Bond-by-bond data for znt

This section discusses data for the net bond demand of arbitrageurs (znt).
11 Because znt

equals the net bond supply of preferred habitat investors at the bondmarket equilibrium,

we may construct data for znt from the supply side, specifically by constructing data on

1) preferred habitat investors’ net bond supply and 2) arbitrageurs wealth, and dividing

the former by the latter.

Suppose preferred habitat investors in Japan consist of only fiscal and monetary

authorities (i.e., the MoF as the issuer of JGBs and the BoJ under unconventional

monetary policies). This assumption is consistent with Iwata’s (2014) work because it

uses the average maturity of JGBs held outside the BoJ as a bond supply measure. Under

this assumption, the preferred-habitat investors’ net supply variable can be constructed

by subtracting the stock of BoJ’s bond holdings from that of JGB net market issuance

(i.e., initial issues plus reopened issues minus buybacks). This supply variable can be

constructed on a bond-by-bond basis at a monthly frequency, using BoJ’s bond-by-bond

holding data from its official website (available only from June 2001), and using JGB

net market issuance data from the Japanese bond handbook (Ko-Shasai-Binran) of the

Japan Securities Dealer Association. We use data on the fixed-rate JGBs, thus excluding

data on floating-rate bonds, inflation-linked bonds, and treasury bills (i.e., bonds with

less than one year of maturity). We also focus on JGBs financed in the markets excluding

directly underwritten bonds. Data on arbitrageurs wealth can be constructed by adding

the preferred-habitat investors’ net supply over maturity (i.e., wt =

NX
j=1

zjt).

Figure 1 shows the BoJ’s JGB holdings in billions of yen (Figure 1a) and its share of

10with C1 = − (1/2) b̄1n−1Σ1Σ10b̄10n−1 and C0 = −
X
i=0,1

πi0 (1/2) b̄
i
n−1Σ

iΣi0b̄i0n−1.

11Note that such data is, however, not needed for the model estimation per se (see Section 4.1 for

estimation strategy)
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total net market issuance (Figure 1b) from June 2001 to December 2014, corresponding

to each specified range of bond maturities. Since the QQE began in April 2013, the BoJ’s

holdings, in terms of level, have rapidly increased, notably with respect to maturities

between (i) four and five years followed by those between three and four years (Figure

1a, the second chart); (ii) nine and ten years followed by those between eight and nine

years (Figure 1a, the third chart); and (iii) ten and twenty years (Figure 1a, the bottom

chart). In terms of share, however, only bond purchases with maturities from eight to

ten years stand out relative to the quantitative easing period from 2001 to 2006 due to

the increased net market issuance in other maturities.

Figure 2 shows the net bond supply of preferred habitat investors from April 2013

to December 2014. We focus on this short period to examine the QQE period and to

exclude a period of rapid adjustment in maturity structure by insurance companies.12

Since the QQE began, the net supply of bonds with maturities between three and five

years and between eight and ten years has declined by a few percentage points, whereas

the net bond supply with maturities over ten years somewhat has increased.

4 Estimation

4.1 Estimation strategy

For bond yield data, we use Bloomberg’s zero yield curve data (end-of-month) for Japan.

The sample period for the normal-time model starts after the collapse of the bubble and

ends a month before the BoJ started the zero interest rate policy (February 1992—

February 1999). The sample period for the term-structure model at the ZLB starts

from the latest ZLB regime period identified by Hayashi and Koeda (2014) (December

2008—December 2014). We use bond yields of 3, 24, 60, and 120 month maturities for

12It may be natural to treat insurance companies and pension funds as additional preferred habitat

investors. However, their bond-by-bond holding data is not publicly available. Using disclosures infor-

mation, Fukunaga, Kato, and Koeda (2015) construct bond holding data including insurance companies

and pensions as additional preferred habitat investors. See Appendix A of their paper for a detailed

description of data construction.

10



estimation, allowing the 60-month bond yield equation for measurement error. Table 1

reports summary statistics.

Our model estimation is based on Hamilton and Wu’s (2012b) minimum-chi squared

estimation and asymptotic standard error calculation method. As in HW, we estimate

model parameters under each regime separately. We first use Hamilton andWu’s (2012b)

estimation method of just-identified latent-factor models to estimate the normal-time

term structure coefficients (cQ,ΦQ, ā11, b̄
1
1,Φ

1), normalizing Σ1and c1 to a 3×3 identity
matrix and a 3 × 1 zero vector, respectively. We then estimate the ZLB regime term
structure coefficients (π00, δ

0
0, c

0, Σ0,Φ0) taking the normal-regime model parameters as

given. As in HW, model’s deep parameters (γ,αi2, ...,α
i
N , ξ

i
2, ..., ξN , for i = 0, 1) cannot

be estimated by this term-structure model estimation method. Appendix B provides a

detailed description of the estimation strategy for the ZLB regime coefficients.

4.2 Estimated results

The average yield curve under each regime (Figure 3a) indicates that the yield curve has

flattened on average at the ZLB13 especially up to ten-year maturity, and factor loadings

under each regime (Figure 3b) indicate that yields became less responsive to yield-curve

factors at the ZLB, especially the third yield-curve factor (lower right in Figure 3b).

Table 2 reports the estimated parameters. The probability that the ZLB regime

continues into the next month (π00) is estimated to be 0.93. The first and second yield-

curve factors become much less volatile (compare the (1,1) and (2,2) elements of Σ1

and Σ0) under the ZLB regime, while the third yield-curve factor becomes more volatile

under the ZLB regime, although its link with yields notably weakens.

How are supply factors related to excess bond returns under each regime? This

question can be examined, given the estimated model parameters and the degree of

arbitrageurs’ risk aversion (γ), using eqs. (11) - (12). For the benchmark case, we

assume that arbitrageurs are required to sell long-term (say 10- or 20-year) bonds and

buy shorter-term (say 1- or 5-year) bonds by one percent share of their total bond

13The flattening of yield curve at the ZLB is consistent with previous findings such as those of Okina

and Shiratsuka, 2004, Oda and Ueda, 2007, and Koeda, 2013.
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holdings under the ZLB regime, whereas they are required to perform the opposite

transactions under the normal regime. The corresponding changes in expected risk

premium (one-period holding period excess returns) for n-period bond can be computed

by

∆ \Et
¡
rx1t+1,n

¢
= γ̃[̄b1n−1Σ̂

1Σ̂10
³
−0.01 \b̄10short−1 + 0.01\b̄10long−1

´
, (13)

∆ \Et
¡
rx0t+1,n

¢
= γ̃

X
i=0,1

π̂i0
[̄bin−1Σ̂

iΣ̂i0
³
0.01 \b̄i0short−1 − 0.01\b̄i0long−1

´
, (14)

where long = 120month or 240month, short = 12month or 60month, and n = short or

long. Parameters denoted by “hat” are estimated values while γ̃ denotes a candidate

value. Because γ is a deep parameter that cannot be estimated via the estimation

procedure described in the previous section, we have attempted to estimate γ using

either the prices-of-risk equation (eq. (10)) or the risk premium equations (eqs. (11)-

(12)), replacing the model parameters with estimated values and znt with data described

in Section 3. However, the estimated γ turns out to be highly time varying under either

method.

We thus report results with different values of γ. Table 3 reports model-implied risk

premium changes in response to the supply shift in the benchmark case for γ = 50, 100,

200 and 500. For example, if γ = 100 (which corresponds to HW’s calibrated value

for the United States), short = 12 month, and long = 120 month, the 10-year bond

risk premium is expected to increase by 7 basis points under the normal regime (by

eq. (13)), while it is expected to decrease by only about 2 basis points under the ZLB

regime (by eq. (14)). On the other hand, the corresponding risk-premium changes for

one-year bonds are small (see “1-year” columns in Table 3), implying that the effect of

BoJ’s long-term bond purchases that involves reserve accumulation should be similar to

that of its maturity swaps that involve no reserve changes.

Not surprisingly, the supply effect on risk premium intensifies with maturity. If

the long-term bonds were 20-year bonds instead of 10-year bonds (i.e., set long = 240

instead of 120), then the 20-year bond risk premium is expected to increase by 24 basis

points under the normal regime and it is expected to decrease by about 6 basis points

under the ZLB regime. Thus the supply effect of 20-year bonds is three or four times
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larger than that of 10-year bonds.

The higher sensitivity of long-term bond excess returns to supply factors in the

normal regime stems from the higher volatilities of yield-curve factors (Σ1 compared

with Σ0) as well as the greater responsiveness of yields to yield-curve factors (Figure

3b). These risk premium changes multiply with the value of γ. If γ doubles to 200,

changes under the normal regime double to 15 basis points for 10-year bonds and 48

basis points for 20-year bonds. This implies that the degree of arbitrageurs’ risk aversion,

which could take a much higher value than 100 in Japan under some circumstances,14 is

a key determinant of the sensitivity of bond yields or excess returns to supply factors.

5 Conclusion

This paper finds that bond excess returns can be more sensitive to supply factors in

normal times unless arbitrageurs become willing to take on more risks. Looking ahead,

there is much concern about the impact that exit from the current unconventional

monetary policy will have on JGB markets. How much supply factors affect bond

yields and bond risk premia at the exit depends on how quickly arbitrageurs can adjust

their risk appetite to a more volatile market environment. If arbitrageurs cannot favor

volatility in the normalization process–for example, under new stricter regulation of

interest rate risk–then the yield-curve steepening effect of bond sales at the exit by BoJ

could easily outweigh the flattening effect of its bond purchases at the ZLB. Furthermore,

the choice of bond maturity sold at the exit seems to be important. For example, the

estimated results imply that doubling the maturity from 10 to 20 years would more than

triple the supply effect on risk premium.

Going forward, the existing term structure model with preferred habitat could be

further developed in several ways. First, existing models usually assume that arbi-

trageurs’ risk aversion is constant over time. Given the weak empirical support for this

assumption, arbitrageurs’ risk aversion could be allowed to be time varying. Second, the

14For more discussion see Fukunaga, Kato and Koeda (2015). They attempt to estimate this deep

parameter (γ) and find that the estimated value is sensitive to both time and bond maturity.
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preferred habitat investors’ supply equation may explicitly take into account different

types of investors to analyze each of their roles in the bond markets.

Acknowledgement I thank Ichiro Fukunaga, Takashi Kano, Naoya Kato and partic-

ipants of Center for Positive Political Economy’s macroeconomics-finance workshop at

Waseda University for helpful comments. I thank Naoya Kato for sharing his data file

on bond issuance information.

References

[1] Chadha, J. S., P. Turner, and F. Zampolli. (2013) “The Interest Rate Effects of

Government Debt Maturity,” BIS Working Papers, 415, Bank for International

Settlements.

[2] Cochrane, J. H., and Monika Piazzesi. (2005) “Bond Risk Premia,” American Eco-

nomic Review, American Economic Association, Vol. 95(1), pp. 138-160, March.

[3] Fan, Longzhen, Canlin Li, and Guofu Zhou. (2013) “The Supply and Demand

Factor in the Bond Market: Implications for Bond Risk and Return,” Journal of

Fixed income, Vol. 23, No. 2, pp. 62-81.

[4] Funayama, Kazuo. (2014) “The Supply Effect on Japanese Government Bond

Yields: from the Aspect of Average Term to Maturity (In Japanese),” mimeo.

[5] Fukunaga, Ichiro, Naoya Kato, and Junko Koeda. (2015) “Maturity Structure and

Supply Factors in Japanese Government Bond Markets,” IMES Discussion Paper

Series 2015-E-10, Institute for Monetary and Economic Studies, Bank of Japan.

[6] Greenwood, Robin, and Dimitri Vayanos. (2014) “Bond Supply and Excess Bond

Returns.” Review of Financial Studies 27, No. 3 (March 2014): pp. 663—713.

[7] Hayashi, Fumio and Junko Koeda. (2014) “Exiting from QE,” NBER Working

Papers 19938, National Bureau of Economic Research, Inc.

14



[8] Hamilton, James D. and Jing Cynthia Wu. (2012a) “The Effectiveness of Alter-

native Monetary Policy Tools in a Zero Lower Bound Environment,” Journal of

Money, Credit and Banking, Blackwell Publishing, Vol. 44, pp. 3-46, 02.

[9] Hamilton, James D. and Jing Cynthia Wu. (2012b) “Identification and Estimation

of Gaussian Affine Term Structure Models,” Journal of Econometrics, Elsevier, Vol.

168(2), pp. 315-331.

[10] Ichiue, Hibiki and Yoichi Ueno. (2015) “Monetary Policy and the Yield Curve at

Zero Interest,” Journal of the Japanese and International Economies, Vol. 38, pp.

1-12, December.

[11] Iwata, Kazumasa. (2014) Has the Issuance of Longer-Term Japanese Government

BondWeakened Expansionary Effects? In K. Iwata and Japan Center for Economic

Research (Eds.), Quantitative Qualitative Easing (In Japanese), Nikkei Publishing

Inc.

[12] Joyce, Michael, David Miles, Andrew Scott, and Dimitri Vayanos. (2012) “Quanti-

tative Easing and Unconventional Monetary Policy — an Introduction,” Economic

Journal, Royal Economic Society, Vol. 122(564), pp. F271-F288, November.

[13] Kaminska, Iryna, Dimitri Vayanos and Gabriele Zinna. (2011) “Preferred-Habitat

Investors and the US Term Structure of Real Rates," Bank of England working

papers 435, Bank of England.

[14] Kim, Don H., and Kenneth J. Singleton. (2012) “Term Structure Models and the

Zero Bound: An Empirical Investigation of Japanese Yields,” Journal of Econo-

metrics, Vol. 170, pp. 32-49.

[15] Li, Canlin and Min Wei. (2013) “Term Structure Modeling with Supply Factors and

the Federal Reserve’s Large-Scale Asset Purchase Programs,” International Journal

of Central Banking, International Journal of Central Banking, Vol. 9(1), pp. 3-39,

March.

15



[16] McCauley, R. N. and Kazuo Ueda, 2009. “Government debt management at low

interest rates,” BIS Quarterly Review, Bank for International Settlements, June.

[17] Oda, N. and K. Ueda. (2007) “The Effects of The Bank of Japan’s Zero Inter-

est Rate Commitment and Quantitative Monetary Easing on the Yield Curve: A

Macro-Finance Approach,” The Japanese Economic Review, Japanese Economic

Association, Vol. 58(3), pp. 303-328.

[18] Okina, K. and S. Shiratsuka. (2004) “Policy Commitment and Expectation Forma-

tion: Japan’s Experience under Zero Interest Rates,” North American Journal of

Economics and Finance, Vol. 15(1), pp. 75-100.

[19] Ueda, Kazuo. (2012) “The Effectiveness Of Non-Traditional Monetary Policy Mea-

sures: The Case Of The Bank Of Japan,” The Japanese Economic Review, Japanese

Economic Association, Vol. 63(1), pp. 1-22, 03.

[20] Vayanos, Dimitri and Jean-Luc Vila. (2009) “A Preferred-Habitat Model of the

Term Structure of Interest Rates,” NBER Working Papers 15487, National Bureau

of Economic Research, Inc.

16



A Approximated term structure model at the ZLB

This appendix solves for the equilibrium bond prices by equating the preferred habitat

investors’ net supply function and the arbitrageurs’ demand function. As mentioned in

Section 2.2, the net supply function for the preferred habitat investors is assumed to be

xnt ≡ ξ0t,n − α0nyt,n, for n = 1, ...N , ξt,n = ξ0n + ϑ0nft. (15)

The arbitrageurs’ demand function can be derived by solving their optimization problem

(i.e., eq. (4), subject to eqs. (5)). The corresponding FOCs are given by

z1t : r1,t,t+1 = φ, (16)

znt :
X
i=0,1

πi0

⎡⎣ ∂
∂znt
E (rt,t+1|st+1 = i, st = 0, ft)

−γ

2
∂

∂znt
V ar (rt,t+1|st+1 = i, st = 0, ft)

⎤⎦ = φ, n = 2, ..., N (17)

where φ is the Lagrange multiplier and the arbitrageurs’ rate of return on their portfolio

(rt,t+1), which is defined by eq. (1), is the sum of holding-period returns on an n-period

bond (rn,t,t+1) weighted by the fraction of their portfolio in the bond of maturity n (znt).

We derive the net demand function of arbitrageurs given the conjecture that the

zero-coupon bond price can be expressed as an exponential affine function of yield-curve

factors (P stt,n = exp
¡
āstn + b̄

st
n ft
¢
). Using an approximation of exp (x) − 1 ' x, the

portfolio mean return and variance (Et (rt,t+1) and Vt (rt,t+1)) can be approximated by

E (rt,t+1|st+1 = i, st = 0, ft) ' −z1t
¡
ā01 + b̄

0
1ft
¢

(18)

+

NX
n=2

znt

⎡⎣ āin−1 + b̄
i
n−1 (c

i +Φift)

+ (1/2) b̄in−1Σ
iΣi0b̄i0n−1 − ā0n − b̄0nft

⎤⎦ ,
V (rt,t+1|st+1 = i, st = 0, ft) '

Ã
NX
j=2

zjtb̄
i
j−1

!
ΣiΣi0

Ã
NX
j=2

zjtb̄
i0
j−1

!
. (19)

Therefore the two derivatives that appear in eq. (17) can be expressed as

∂

∂znt
E (rt,t+1|st+1 = i, st = 0, ft) '

āin−1 + b̄
i
n−1 (c

i +Φift)

+ (1/2) b̄in−1ΣΣ
0b̄i0n−1 − ā0n − b̄0nft

, (20)

γ

2

∂

∂znt
V (rt,t+1|st+1 = i, st = 0, ft) ' γb̄in−1Σ

iΣi0
NX
j=2

zjtb̄
i0
j−1. (21)
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Using the above approximated eqs. (20) and (21), the combined FOCs are given by

ā0n + b̄
0
nft =

X
i=0,1

πi0

⎡⎣ āin−1 + b̄in−1 (ci +Φift)

+ (1/2) b̄in−1Σ
iΣi0b̄i0n−1

⎤⎦−X
i=0,1

πi0b̄
i
n−1Σ

i0λit + ā
0
1 + b̄

0
1ft, (22)

where λit is a function of zt = (z2t, ..., zNt)
0

λit ≡ γΣi0
NX
j=2

zjtb̄
i0
j−1. (23)

Because eq. (22) holds for all ft we can solve for zt as

zt ' Ω−1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
i=0,1

πi0

⎡⎣ Ai
−1 +B

i
−1 (c

i +Φift)

+ (1/2)Bi−1Σ
iΣi0Bi−1

0

⎤⎦−A0 −B0ft +
⎛⎜⎜⎜⎝
1
...

1

⎞⎟⎟⎟⎠ ¡ā01 + b̄01ft¢
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,
(24)

where

A (0) =

⎡⎢⎢⎢⎣
ā02
...

ā0N

⎤⎥⎥⎥⎦ , B (0) =
⎡⎢⎢⎢⎣
b̄02
...

b̄0N

⎤⎥⎥⎥⎦ , Ai
−1 =

⎡⎢⎢⎢⎣
āi1
...

āiN−1

⎤⎥⎥⎥⎦ , Bi−1 =
⎡⎢⎢⎢⎣

b̄i1
...

b̄iN−1

⎤⎥⎥⎥⎦ ,
Ω ≡

X
i=0,1

πi0γB
i
−1Σ

iΣi0 ¡Bi−1¢0 .
Eq. (24) is the arbitrageurs’ demand function. Given zt, the arbitrageurs’ demand for

the short-term bond, z1t, can be derived by z1t = 1−
NX
n=2

znt.

At the bond market equilibrium, the arbitrageurs’ net demand should be equal to

the preferred habitats’ net supply (znt = xnt for all n). Equating the demand and supply

functions, the equilibrium bond prices satisfy the following equation:

ā0n + b̄
0
nft =

X
i=0,1

πi0
£
āin−1 + b̄

i
n−1

¡
ci +Φift

¢
+ (1/2) b̄in−1Σ

iΣi0b̄i0n−1
¤

−
X
i=0,1

πi0b̄
i
n−1Σ

i0γΣi0
NX
j=2

⎛⎝ ξ0j + ϑ0j ft

+b̄0j
¡
ā0j + b̄

0
j ft
¢
⎞⎠ b̄i0j−1

+ā01 + b̄
0
1ft. for n = 2, ..., N.
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The above equation can be rewritten as

0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩−ā
0
n + ā

0
1 +

X
i=0,1

πi0

⎡⎢⎢⎢⎣
āin−1 + b̄

i
n−1c

i

+(1/2) b̄in−1Σ
iΣi0b̄i0n−1

−b̄in−1Σiλi

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (25)

+

(
−b̄0n + b̄01 +

X
i=0,1

πi0

n
b̄in−1Φ

i−b̄in−1Σi0Λi
o)

ft,

where

λi = γΣi0
NX
j=2

b̄i0j−1
¡
ξ0j +

¡
α0j/j

¢
ā0j
¢
, Λi = γΣi0

NX
j=2

b̄i0j−1
¡
ϑ0j +

¡
α0j/j

¢
b̄0j
¢
.

Because eq. (25) must hold for all ft, the two expressions in the curly brackets on the

RHS must equal zero. Thus, for n = 2, ..., N, the following equations must hold:

ā0n = ā01 +
X
i=0,1

πi0
£
āin−1 + b̄

i
n−1

©
ci−Σi0λi

ª
+ (1/2) b̄in−1Σ

iΣi0b̄i0n−1
¤
,

b̄0n = b̄01 +
X
i=0,1

πi0b̄
i
n−1

©
Φi−Σi0Λi

ª
.

The above recursions are consistent with the standard affine term structure model with

regime shifts.

For n = 1, by combining the following two conditions, the one-period bond price can

be represented as an affine function of the yield-curve factors (eq. (26)).

z1t = x1t = ξ01 + ϑ01ft − α01yt,1 (equilibrium condition)

z1t = 1−
NX
n=2

znt (bond portfolio condition)

yt,1 =
¡
1/α01

¢ "
ξ01 +

NX
j=2

¡
ξ0j + α0j ā

0
j/j
¢#− 1| {z }

−ā01

+
¡
1/α01

¢ "
ϑ01 +

NX
j=2

ϑ0j +
¡
α0j/j

¢
b̄0j

#
| {z }

−b̄01

ft. (26)

B Estimating the ZLB regime model

Define Rt,1 ≡ [yt,3, yt,24, yt,120]0 (3-month, 2-year and 10-year yields) as the 3× 1 vector
of yields without measurement error and Rt,2 ≡ yt,60 (5-year yield) as the yield with
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measurement error. Using the factor dynamics equation for the ZLB regime (eq. (6)),

the corresponding yield equations can be rewritten as

Rt,1
3×1

=
¡
A01 +B

0
1c
0 −B01Φ0A01

¢
+B01Φ

0Rt−1,1 +B
0
1Σ

0ut, (27)

Rt,2
1×1

=
³
A02 −B02

¡
B01
¢−1

A01

´
+B02

¡
B01
¢−1

Rt,1 + Σmεt, (28)

where

A01 ≡

⎡⎢⎢⎢⎣
−ā03/3
−ā024/24
−ā0120/120

⎤⎥⎥⎥⎦ , B01 ≡
⎡⎢⎢⎢⎣
−b̄03/3
−b̄024/24
−b̄024/120

⎤⎥⎥⎥⎦
A02 ≡ −ā060/60, B02 ≡ −b̄060/60.

Denote by A+1 , B
+
1 , Ω

+
1 the OLS coefficients obtained by regressing Rt,1 on a constant

and Rt−1,1 (corresponding to the constant, Rt−1,1, and covariance terms respectively)

and A+2 , B
+
2 , and Ω+2 as the OLS coefficients obtained by regressing Rt,2 on a constant

and Rt,1 (corresponding to the constant, Rt,1, and variance terms respectively).

The parameters for the ZLB regime model (π00, δ
0
0, c

0, Σ0,Φ0) can be estimated

in the following steps. First, given the recursive equations for b̄0n (which are func-

tions only of π00 given the normal-regime model parameters and the zero-lower re-

striction of b̄01 = [0, 0, 0], see eq. (9)) estimates of Σ0 and Φ0 can be obtained by

numerically solving for Σ̂0Σ̂00 =B−11 Ω+
1 B

−10
1 and Φ̂0=B−11 B

+
1 (see eq. (27)). Sec-

ond, given Σ̂0 and Φ̂0, the estimate for c0 can be obtained by numerically solving

for ĉ0 = B−11
¡
A+1 −A1 +B1Φ0A1

¢
(see eq. (27)). Third, π00 can be estimated via

the minimum chi-square estimation procedure for an overidentified case, as proposed by

Hamilton and Wu (2012b) using eq. (28).
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Figure 1. The BoJ’s JGB holdings by maturity. 

 

(a)  In billions of yen (b)  The share in net market issuance 

   

This figure plots BoJ’s JGB holdings for specified ranges of maturities (a) in billions of yen and (b) as a fraction 

of the corresponding maturities of net market MoF’s issuance. Net market issuance is MoF’s initial plus 

reopening issues minus buybacks. The sample period is from June 2001 to December 2014. 

 



 

Figure 2. Preferred-habitat investors’ net JGB supply. 
 

 
This figure plots the total JGB net market issuance minus the stock of BoJ's bond holdings for each specified 

range of maturities of bond as a fraction of arbitrageurs’ wealth. The sample period is from April 2013 to 

December 2014. 
  



 

Figure 3a. Average yield curve under each regime 

 
This figure plots average yield curves (i.e. the model-implied yield curve calculated with the 

average values of estimated factors under each regime) expressed at the annualized rate in 

percent. Z stands for the zero rate regime and P stands for the normal regime.  

 

 

 

Figure 3b. Factor loadings under each regime 

 
This figure plots factor loadings (i.e., the coefficients in the yield equation) against maturity (in 

month). The unit of coefficients is selected so that the model-implied yields are expressed at the 

annualized rate in percent. The upper left, upper right, lower left, and lower right charts 

correspond to the constant term, the first factor, the second factor, and third factor respectively. 

Z stands for the zero rate regime and P stands for the normal regime. 

 



Table 1. Summary statistics. 
 
(a) The normal regime period (February 1992--February 1999) 

 
 
(b) The zero rate regime period (December 2008--December 2014) 

 
Risk premium is one-month holding period excess returns. Normal distribution has skewness of 
zero and kurtosis of 3. 

  

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

3-month 1.561 1.418 0.845 2.593 0.991 0.979 0.969

24-month 1.821 1.302 0.592 2.042 0.982 0.963 0.934

60-month 2.678 1.385 0.469 2.124 0.977 0.951 0.914

120-month 3.537 1.300 -0.098 2.024 0.975 0.947 0.914

Excess returns (10y bond) 0.691 2.845 -0.736 4.978 0.045 0.077 -0.274

Excess returns (20y bond) 0.899 5.146 -0.759 5.404 0.050 0.011 -0.283

AutocorrelationsCentral moments

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

3-month 0.110 0.059 0.455 4.571 0.953 0.913 0.880

24-month 0.155 0.093 1.210 4.218 0.974 0.934 0.894

60-month 0.371 0.199 0.705 2.574 0.965 0.925 0.880

120-month 0.990 0.315 -0.090 1.819 0.967 0.940 0.910

Excess returns (10y bond) 0.303 0.799 -1.034 5.173 -0.090 0.006 -0.086

Excess returns (20y bond) 0.544 1.767 -1.009 4.865 -0.095 -0.002 -0.100

Central moments Autocorrelations



Table 2. Estimated parameters. 
 

 

Values in parenthesis are standard errors. c¹ and ∑¹are a 3×1 vector of zeros and a 3×3 identity matrix. 

Yield curve coefficients Transition probability

0.00 0.04 0.07 0.17 0.05 0.930

(0.92) (0.63) (0.36) (0.01) (0.09) (0.01)

Factor dynamics 

0.00 0.91 0.10 -0.03 1.00 --- ---

--- (1.22) (1.15) (0.83) --- --- ---

0.00 0.04 0.78 0.09 --- 1.00 ---

--- (1.15) (1.22) (0.27) --- --- ---

0.00 0.00 0.18 0.85 --- --- 1.00

--- (1.58) (0.07) (0.05) --- --- ---

-0.57 0.97 0.26 0.04 0.45 --- ---

(0.32) (0.06) (0.16) (0.16) (0.013) --- ---

-0.62 -0.13 0.64 -0.01 --- 0.30 ---

(0.38) (0.02) (0.06) (0.06) --- (0.002) ---

2.84 0.51 1.00 0.94 --- --- 2.06

(0.59) (0.03) (0.08) (0.08) --- --- (0.007)

0.03 0.99 --- --- 0.03 0.12

(1.53) (0.26) --- --- (0.002) (0.009)

0.17 0.03 0.99 ---

(0.23) (0.01) (0.26) ---

-0.04 -0.03 0.20 0.86

(0.18) (1.73) (0.27) (0.06)
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Table 3. Changes in excess returns in response to supply shifts 

 

 
In annualized rate in basis points. This table reports changes in one-month holding period excess 

returns to a supply shift that requires arbitrageurs to sell (buy) the longer-term bonds and buy (sell) the 

shorter-term bonds by one percent share of their holdings under the zero rate regime (the normal 

regime) at the bond market equilibrium. We treat 10- or 20-year bonds as “longer-term” and 1- or 5-

year bonds as “shorter-term.” 
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