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Abstract

We present a logic called the epistemic infinite-regress logic EIR for  players. It ex-

tends the epistemic logic KD, by incorporating the operators expressing infinite regresses.

Here, an infinite regress arises from the interdependent thinking of a player about the other’s

thinking and vice versa. If we add Axiom T (truthfulness) for the belief operators to the

logic EIR, the concept of an infinite regress collapses into the common knowledge. However,

we keep the subjective nature of the concept, avoiding Axiom T as well as Axiom 4. We

prove the completeness theorem with respect to Kripke semantics and a certain restricted

class of Kripke models. These lead to various meta-theorems useful for considerations of

prediction/decision making by a player in a game. Using the meta-theorems, we show that

a statement about  players can be decomposed into  independent statements, vice versa,

and even that we can go back and forth from a statement for each player into its epistemic

content.

Key words: Infinite regress, Common knowledge, Epistemic logic, Nash equilibrium, Epis-

temic separation

1 Introduction

We develop the epistemic infinite-regress logic EIR which is a fixed-point extension of (propo-

sitional) epistemic logic KD with  players. The logic is motivated by studies of both ex ante

prediction/decision making and ex post observations in a game; Hu-Kaneko [5] applied the logic

EIR2 to study game-theoretic decidability/undecidability. We introduce new operators to ex-

press the concept of an (epistemic) infinite regress that naturally arises in prediction/decision

making in a game. Because of interdependence of payoffs, for a player  to make his decision, 

needs to make prediction about the decision of the other player, say, . This prediction, however,

also requires ’s belief about ’s predictions about  and then the process continues ad infinitum.

In the 2-person case, this infinite regress of beliefs can be represented as an infinite set of the

following form:

{B()BB()BBB()BBBB() } (1)
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where B(·) and B(·) and the belief operators of players  and  ( 6= ). In the logic EIR2

this regress is expressed as the fixed-point operator Ir(;) := Ir(1 2); for the -person

case it is expressed as Ir(1  ) Thus, the logic EIR
 is a fixed-point extension of the

epistemic logic KD by adding one axiom schema and one inference rule for Ir(1  )  ∈
 = {1  }

The concept of an infinite regress Ir(1  ) is closely related to that common knowledge.

Indeed, it is shown in Section 2.3 that if we add Axiom T(truthfulness): B() ⊃  then the

infinite regress Ir(1  ) collapses to the common knowledge of 1 ∧  ∧  (Theorem

2.3), and the resulting logic is a common knowledge logic (cf., Fagin et al. [3] and Meyer-van

der Hoek [14]). We also consider its status when we add Axiom 4 (positive introspection):

B() ⊃ BB(). Nevertheless, we take the KD-type EIR
 as our main logical system for

various reasons, which are explained now.

First, we should mention a significant difference in the formulations of the logic EIR between

the 2-person case and -person case with  ≥ 3. For the 2-person case, we can give essentially
two different formulations for Ir(1 2)  = 1 2 One formulation is adopted in Hu-Kaneko

[5], but is not available if  ≥ 3 In this paper, we give another formulation which is available
for either  = 2 or  ≥ 3; and it is equivalent to the formulation given in [5] for  = 2 We

evaluate these formulations, while developing our theory.

We show that the logic EIR is complete with respect to the Kripke semantics (Theorem 3.1).

For application purposes, we also present a variant of the completeness result (Theorem 3.2) such

that we can restrict the class of models to that of rooted models. These completeness results

enable us to develop various meta-theorems for our game-theoretic applications. Those meta-

theorems reflect some fundamental principles relevant for a logical system describing players’

subjective thinking in a game, and based on them, we evaluate various epistemic axioms based

on these meta-theorems. Our choice of KD as our base logic is crucial to maintain those

principles.

The completeness results show that the operator, Ir(1  ), fully captures the set in (1).

By this fact, it is expected that Ir(1  ) is within the scope of the belief operator B(·)
since every formula in (1) has the outermost B(·). Actually, Ir(1  ) can be expressed

by another equivalent formula, B[ ∧ (∧ 6=Ir(A))], in EIR (Theorem 2.2). This allows us

to regard Ir(1  ) as a belief formula for player  and also to consider the derivability of

the epistemic content of the infinite regress in his logical inferences, even though Ir(1  )

is syntactically indecomposable.

One meta-theorem, called the Scope Theorem (Theorems 4.1), shows that B() ` B()

is equivalent to  ` ̇. This equivalence is also applicable to our infinite regress operators

(Theorem 4.3). This theorem allows us to change the epistemic scope from player ’s subjective

perspective to the analyst’s, and vice versa. This change of scopes is critical in studies of

interdependent subjective inferences for prediction/decision making. The Scope Theorem is also

needed to evaluate the two different formulations of EIR

Another meta-theorem, called the Separation Theorem (Theorem 4.2), shows that B1(1)∧
 ∧ B() ` B1(1) ∧  ∧ B() is equivalent to B() ` B() for all . Thus, a

statement about prediction/decision making as a whole can be decomposed into individualistic

statements, and vice versa. This theorem separates individual subjectivities, in the sense that

players’ subjective beliefs are the only sources for their ultimate decisions. Thus, in our logic,

we can explicitly distinguish the source of belief-changes. In particular, our formulation allows
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for a meaningful interaction between subjective beliefs and objective observations.

In Section 5, we show applications of our theory on EIR to ex ante prediction/decision

making and their interactions with ex post observations. The decidability/undecidability results

given in Hu-Kaneko [5] are mentioned, which concern ex ante prediction/decision making. While

the analysis in Hu-Kaneko [5] is purely subjective and individualistic, our meta-theorems here

allow us to decompose the entire situation that includes all players’ perspectives and the objec-

tive situation into subjective reasonings. Moreover, given this decomposition, we also consider

the interaction between ex ante subjective reasoning and ex post observations, and show that

Nash equilibrium describes the situation where players’ subjective inferences are consistent with

observed behavior.

The scope theorem is newly given in this paper, while it is used in [5]. A primitive form of the

separation theorem was proved in Kaneko-Nagashima [8] in an infinitary (predicate) epistemic

logic (including Axiom 4) in a proof-theoretic manner, and a more sophisticated version was

shown in a model theoretic manner in Kaneko-Suzuki [11] in an epistemic logic of shallow

depths. The scope theorem crucially depends upon the choice KD as the base logic for EIR;

we provide counterexamples to show that theorem fails if we add either Axiom T or Axiom 4.

The separation theorem fails with Axiom T, but is compatible with Axiom 4.

The paper is organized as follows: Section 2 gives a Hilbert-style formulation of EIR and

some basic lemmas, and some other variants. Then, Section 3 gives the Kripke semantics and

the basic completeness (/soundness) theorem, the ep-rooted completeness theorem, and as an

application, we prove scope lemma. Section 4 gives the epistemic separation theorem. Section

5 is a game theoretic application. Section 6 gives the proof of the basic completeness theorem.

2 Epistemic Infinite-Regress Logic EIR

Here we formulate the infinite-regress logic EIR as a fixed-point extension of epistemic logic

KD with  players. In Section 2.1, we also mention an alternative formulation of EIR and that

for 2 players given in Hu-Kaneko [5]. In Section 2.2, we give basic lemmas which we utilize for

subsequent arguments; Theorem 2.2 (Epistemic content) is specific to the concept of an infinite

regress, and plays crucial roles in subsequent arguments. In Section 2.3, we compare EIR with

the common knowledge logic CKL with the presence of Axiom T or Axiom 4.

2.1 Formal system

The language for the infinite-regress logic EIR is as follows:

propositional variables: p0p1 ; logical connectives: ¬ (not), ⊃ (imply), ∧ (and), ∨ (or);
unary belief operators: B1(·) B(·);
-ary infinite regress operators: Ir1(·  ·)  Ir(·  ·); parentheses: (, ).

We denote  := {p0p1 } The set of players, whose generic element  appears as the

subscript of belief operator B(·) and infinite regress operators Ir(·  ·) is denoted by  =

{1  }
We define the sets of formulae, denoted F , by the following induction: (o): each  ∈ 
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is a formula; (i): if  are formulae, so are ( ⊃ ), (¬), B() for  ∈  ; (ii): if

A = (1  ) is a vector of formulae, then Ir(A) is also a formula for  ∈  ; (iii): if Φ is

a finite (nonempty) set of formulae, then (∧Φ) and (∨Φ) are formulae. The set of all formulae
is denoted by F , and the set of all nonepistemic formulae, i.e., the ones with no occurrences of
B(·) and Ir(· · ·) for  ∈  is denoted by F0

We abbreviate parentheses when no confusions are expected, and use different parentheses

such as [ ] for convenience. Also, ∧{1  } may be expressed as 1 ∧  ∧ , etc. We

also abbreviate ( ⊃ ) ∧ ( ⊃ ) as  ≡ . We stipulate that when we talk about player 

the other players are denoted by −. The formula Ir(A) = Ir(1  ) is also denoted as

Ir(;−). When we refer to a contradictory formula, we will use (¬) ∧  where  is some
propositional variable.

The base logic of EIR is classical logic, formulated by five axiom (schemata) and three

inference rules: for all formulae , and finite nonempty sets Φ of formulae,

L1:  ⊃ ( ⊃ ); L2: ( ⊃ ( ⊃ )) ⊃ (( ⊃ ) ⊃ ( ⊃ ));

L3: (¬ ⊃ ¬) ⊃ ((¬ ⊃ ) ⊃ );

L4: ∧Φ ⊃ , where  ∈ Φ; and L5:  ⊃ ∨Φ, where  ∈ Φ;
 ⊃  


MP

{ ⊃  :  ∈ Φ}
 ⊃ ∧Φ ∧-rule { ⊃  :  ∈ Φ}

∨Φ ⊃ 
∨-rule

Now, we add two epistemic axioms and one inference rule for the belief operators B(·): for all
formulae , and for  = 1  ,

K: B( ⊃ ) ⊃ (B() ⊃ B()); D: ¬B(¬ ∧);


B()
NEC.

Those axioms and inference rules constitute epistemic logic KD.

The epistemic infinite-regress logic EIR is defined as the system by adding the following

axiom schemata and rules to KD : for  ∈  , and any vectors of formulae, A = (1  )

and D = (1 ),

IRA : Ir(A) ⊃ B() ∧B [∧ 6=Ir(A)] ;

IRI :
{ ⊃ B() ∧B(∧ 6=) :  ∈ }

 ⊃ Ir(A) 

The names, IRA and IRI, stand for “infinite regress axiom” and “infinite-regress inference”.

Note that these are assumed for all  ∈  Axiom IRA requires a fixed-point property for

Ir(A) in the interactive fashion that it contains ∧ 6=Ir(A) within the scope of B(·) Rule IRI
states that if 1  share the property described by Axioms IRA1 IRA then  implies

Ir(A)

In fact, Ir(A) induces, with the help of the other Ir(A)  6=  the following infinite set:

{B0B1 B() : (0 1  ) is a sequence of any finite length in  (2)

with  6= +1 for  = 0   − 1 and 0 = }
This is the -person version of (1). To see that each formula in (2) is logically implied by Ir(A),

first note that Axiom IRA itself implies B() and B(Ir(A)). For player  to explicate his
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belief B(Ir(A)) he needs B(IRA) which he has by Nec. Thus, we obtain BB() from

B(Ir(A)) together with B(IRA) Repeating this argument, we obtain the whole set in (2) as

logical implications of Ir(A).

The upper formulae of Rule IRI states that 1  have the properties described by

IRA1 IRA Rule IRI requires Ir(A) to be deductively weakest among such ’s. These

rules, as shown later with the help of the completeness/soundness theorem, implies that Ir(A)

is semantically determined by the set in (2).

A proof  = h;i in EIR is constituted of a finite tree hi and a function  :  → P
with the following three requirements: (i) for each node  ∈  () is a formula attached to ;

(ii) for each leaf  in hi, () is an instance of the axiom schemata; (iii) for each non-leaf

 in hi, the following is an instance of the above five rules:
{() :  is an immediate predecessor of }

()


We call  a proof of  iff  is attached to the root of a proof  . We say that  is provable,

denoted by ` , iff there is a proof of . As stated in Section 1, we need nonlogical axioms for

game theoretical applications. We introduce nonlogical assumptions in the following manner:

For a set of formulae Γ, we write Γ `  iff `  or there is a finite nonempty subset Φ of Γ

such that ` ∧Φ ⊃ 1. We say that a set of formulae Γ is inconsistent iff Γ ` (¬) ∧ ; and Γ is
consistent otherwise.

As it stands, it may be difficult to interpret rule IRI as an inference rule from player

’s subjective perspective, because B [∧ 6=]  6= , appear in the upper formulae of IRI.

However, we can modify IRI as follows:

IRIInd :
 ⊃ B() ∧B(∧ 6=) {B[ ⊃ B() ∧B(∧ 6=)] :  6= }

 ⊃ Ir(A) 

That is, it asserts that when  ⊃ B() ∧ B(∧ 6=) and B[ ⊃ B() ∧ B(∧ 6=)]

are are already proved, the lower formula  ⊃ Ir(A) is provable, too. This inference rule is
purely subjective from player ’s perspective.

Note that Rule IRI is permissible in the system with the rule IRIInd , and hence the later

system is deductively stronger than EIR Actually, we have the converse, which is stated in

Theorem 2.1.(i) below. We prove this converse using the soundness/completeness theorem for

EIR in Section 4. Although the system with rule IRIInd is better interpreted than EIR they

are equivalent and EIR is simpler. For this reason, we discuss mainly the logic EIR.

Both Axiom IRA and Rule IRI (and IRI
Ind
 ) are interactive in the sense that each includes

Ir(A) or  for  different from  For  = 2 however, intrapersonal versions of the axiom and

rule are given by Hu-Kaneko [5]: for  = 1 2

IRAHK : Ir(A) ⊃ B() ∧BB() ∧BBIr(A);

IRIHK :
 ⊃ B() ∧BB() ∧BB()

 ⊃ Ir(A) 

Although the system with IRAHK and IRIHK is more appealing from the viewpoint of individual

inference than EIR2, only the 2-person version of such system is deductively equivalent to EIR,

1Given this definition, take Γ as the set in (2), we do not have Γ ` Ir(A). Hu-Kaneko-Suzuki (2014) permits
infinite conjunction of the set in (2) in an infinitary logic.
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as stated Theorem 2.1.(ii). In the extension of IRAHK and IRIHK to the three player case, for

example, B1B2B1B2(2) is not derived from Ir1(1 2 3) The proof will be given in Section

3.3.

Theorem 2.1. (Equivalent formulations of EIR) (i): For any formula  ∈ F  `  in EIR if

and only if `  in the system with rule IRIInd instead of IRI.

(ii): Let  = 2 For any formula  ∈ F  `  in EIR if and only if `  in the system with

IRAHK and IRIHK instead of IRA and IRI.

2.2 Basic Properties of EIR

Here, we list some known facts on KD which will be used without referring. The first two are

provable formulae in classical logic and the other three are provable in KD In the following,

 are arbitrary formulae, Φ an arbitrary finite nonempty set, and  = 1  .

Lemma 2.1. (i) ` [ ⊃ ( ⊃ )] ≡ [∧ ⊃ )]; (ii) `  ⊃  and `  ⊃  imply `  ⊃ ;

(iii) ` B(¬) ⊃ ¬B(); (iv) ` ∨B(Φ) ⊃ B(∨Φ); (v) ` B(∧Φ) ≡ ∧B(Φ)

As mentioned previously, Ir(A) = Ir(1  ) intends to capture the set in (2), all

formulae in which are within the scope of B(·). We may then regard Ir(A) as having the outer
B(·) even though Ir(·  ·) is a primitive symbol. The following theorem formally justifies

this interpretation. It states that Ir(A) is logically equivalent to another formula that begins

with B(·), and it gives the epistemic content of Ir(A). This theorem also justifies our claim

that the operator is Ir(·  ·) captures player ’s subjective thinking.
Theorem 2.2. (Epistemic Content): ` Ir(A) ≡ B[ ∧ (∧ 6=Ir(A))].

Proof. The one direction ` Ir(A) ⊃ B[∧(∧ 6=Ir(A))] follows from IRA Consider the con-

verse. Let  = B()∧B(∧ 6=Ir(A)) for  ∈  We show `  ⊃ B() ∧B(∧ 6=)

It suffices to show `  ⊃ B(∧ 6=) Let  6= . By IRA (Nec and K), ` B(Ir(A)) ⊃
BB()∧BB(∧6=Ir(A)) i.e., ` B(Ir(A)) ⊃ B(B()∧B(∧6=Ir(A)) which is writ-
ten as ` B(Ir(A)) ⊃ B() Since this holds fro all  6=  we have ` B(∧ 6=Ir(A)) ⊃
B(∧ 6=) Thus, `  ⊃ B(∧ 6=); so `  ⊃ B() ∧B(∧ 6=) Since this holds for

all  ∈  we can apply IRI and thus we have ` B() ∧B[∧ 6=Ir(A)] ⊃ Ir(A)¥
Here, we state various basic properties of Ir(·  ·). We write A ⊃ B for (1 ⊃ 1   ⊃

) We also write Ir(Φ;−) := {Ir(;−) :  ∈ Φ}. The properties (i)-(iv) are inherited
from the belief operator B(·) satisfying Axioms K and D and Rule Nec. In particular, (i)

corresponds to Axiom K, (ii) corresponds to Lemma 2.1.(iii), (iii) corresponds to Lemma2.1.(iv)

and (v), and (iv) corresponds to the Rule Nec. Finally, (v) follows from the negation of the

Axiom IRA.

Lemma 2.2. (Basic properties of Ir(·  ·)): Let AC be any -tuples of formulae, and Φ

a finite nonempty set of formulae. Then,

(i): ` Ir(A ⊃ B) ⊃ (Ir(A) ⊃ Ir(C))
(ii): Let C∗ = (∗1   

∗
) where 

∗
 is either  or ¬ for all  ∈  Then, if ∗ = ¬ then

` Ir(¬;C
∗
−) ⊃ ¬Ir(;C

∗
−) and if 

∗
 = ¬ for some  ∈  then ` Ir(C∗) ⊃ ¬Ir(C).

(iii): ` Ir(∧Φ;A−) ≡ ∧Ir(Φ;A−); and ` ∨Ir(Φ;A−) ⊃ Ir(∨Φ;A−)
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(iv): if Ir(A) ` B() ∧ B[∧ 6=B()] then Ir(A) ` Ir(C); particularly, if `  for all

 ∈  then ` Ir(C);
(v): if Ir(A) ` ¬[B() ∧B(∧ 6=B())] then Ir(A) ` ¬Ir(C)

Proof. Those can be proved by choosing appropriate formulae for {}∈ in IRI We prove

only (i) and (v).

(i): For each  = 1  , let  = Ir(A ⊃ C) ∧ Ir(A) Then, by IRA , `  ⊃ B(( ⊃
) ∧ ) which implies `  ⊃ B(). Again by IRA  we have `  ⊃ B(∧ 6=) Thus,

`  ⊃ B() ∧B(∧ 6=); i.e., we get the upper formulae of IRI Hence, `  ⊃ Ir(C)
This implies (i).

(v): Suppose Ir(A) ` ¬[B() ∧ B(∧ 6=B())]. This is equivalent to Ir(A)B() ∧
B(∧ 6=B()) ` ¬∧. By IRA we have Ir(A) Ir(C) ` ¬∧ Thus, Ir(A) ` ¬Ir(C).¥

2.3 Common knowledge, and Axioms T and 4

The concept of infinite regress is closely related to common knowledge due to Lewis [13] and

Aumann [1]. To discuss common knowledge in our logic, we add one unary operator symbol

C(·) to the list of primitive symbols in Section 2 and extend the set of formulae by allowing
C(). Then, we add Axiom CKA and Inference CKI to IR : for any formulae  and 

CKA: C() ⊃  ∧ (B1(C()) ∧  ∧B(C()));

CKI:
 ⊃  ∧ (B1() ∧  ∧B())

 ⊃ C() 

These also form a fixed-point definition of C(). The logical implications of C() include all

formulae in the following set:

{} ∪ {B0B1 B() : (0 1  ) is a sequence of any finite length in } (3)

This is obtained by repeated uses of CKA. By the completeness/soundness theorem for CKL,

in terms of semantics, this set is exactly captured by C().

The set (3) makes it clear that C() is formulated from the outside analyst’s perspective, as

it includes all players’ subjective thinking as well as the objective situation. It therefore differs

from the infinite regress, Ir(  ), which is formulated purely from player ’s subjective

perspective. However, this subjectivity would disappear if we impose the truth axiom that

is typically assumed in CKL. To make this point formally, we suppose that the logic EIR

includes C(·) for Axiom CKA and Rule CKI as stated above. We denote by EIR(T) by

assuming Axiom T: B() ⊃  ( ∈ F) The following theorem shows that the infinite regress

Ir(1  ) collapses to the common knowledge C(1 ∧  ∧ ) in the logic EIR
(T), and

hence the subjectivity is destroyed.

Theorem 2.3. (Collapse under Axiom T): For any  ∈  and -tuple (1  ) of

formulae,

EIR(T) ` Ir(1  ) ≡ C(1 ∧  ∧) (4)

Proof. We prove ` Ir(1  ) ⊃ C(1∧ ∧) We have, from Axiom IRA using Axiom

T several times, that ` Ir(1  ) ⊃ (1 ∧  ∧ ) ∧ [∧∈B(Ir(1  ))] This and

CKI imply ` Ir(1  ) ⊃ C(1 ∧  ∧) The converse is proved similarly.¥
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Without imposing Axiom T, a closely related formula to Ir(  ) by using the operator

C(·) is B(C()), which also describes player ’s subjective perspective. The formula B(C())

then corresponds to the set of formulae in (3) but adding the operator B(·) before each of them.
The key difference between the two, however, lies in the fact that B(C()) includes all formulae

of the form B0B1 B() for any finite sequence (0 1  ) with 0 = , while Ir(  )

only includes those with an alternating epistemic structure. In fact, our next theorem shows

that the two formulae are equivalent if we add Axiom 4 (Positive Introspection), B() ⊃
BB() ( ∈ F and  ∈ ), to EIR. We denote the logic obtained from EIR by EIR(4) by

adding Axiom 4.

Theorem 2.4. (Belief of common knowledge under Axiom 4): for any formula  and

 ∈ 

EIR(4) ` Ir(  ) ≡ BC() (5)

Proof. We abbreviate Ir(  ) as Ir() Let us prove ` Ir() ⊃ BC() Consider the

formula  =  ∧ Ir1() ∧  ∧ Ir() Since ` Ir() ≡ B( ∧ (∧ 6=Ir())) by Theorem 2.2,

we have ` Ir() ⊃ B() ` Ir() ≡ B(∧ 6=Ir())) and finally ` Ir() ⊃ B(Ir())) by

Axiom 4. By combining these three, we have ` Ir() ⊃ B( ∧ (∧∈Ir())) i.e.,

` Ir() ⊃ B() (6)

Since this holds for any  ∈  we have `  ⊃  ∧ (∧∈B()) which is an upper formula of

CKA Hence, `  ⊃ C() This implies ` B() ⊃ BC() by Nec and K. This together with

(6) implies ` Ir() ⊃ BC()

The converse is simple: Let  = BC() Then, `  ⊃ B()∧B(∧ 6=B()) by CKI By

IRI we have `  ⊃ Ir() i.e., ` BC() ⊃ Ir()¥
Without Axiom 4, however, the two formulae BC() and Ir(  ) behave differently.

For many applications, including our game theoretical ones given in Section 5, the infinite

regress operator with its straightforward interpretation arises naturally in such a context and

has a convenient mathematical structure. In contrast, it is difficult to interpret the arbitrary

rounds of self-introspection involved in BC() in such contexts, and, without Axiom 4, they

also bring in cumbersome epistemic structures that obscure the epistemic analysis in games.

3 Kripke Semantics and Completeness

We give the Kripke semantics for EIR which is the same as the semantics for KD with the

additional valuation for Ir(·  ·) for  ∈  In Section 3.1, we give the basic (soundness-)

completeness theorem, and in Section 3.2, we give a restriction on the semantics to facilitate

further discussions.

3.1 Basic completeness theorem

A Kripke frame  = h ;1  i consists of a nonempty set  of possible worlds and an

accessibility relation  ⊆  × for player  ∈  . We say that a frame  = h ;1  i
is serial iff for  = 1   and for all  ∈ ,  for some  ∈ . A truth assignment  is a
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function from  ×  to {>⊥} A pair  = ( ) is called a model. When  is serial, we

say that  is a serial model.

To define the semantic valuation, we need the concept of an alternating chain. We call

a sequence [(0 0) (1 1)  ( ) +1] a chain iff 0 1  +1 ∈  0 1   ∈ 

and ( +1) ∈  for  = 0 . We say that a chain [(0 0) (1 1)  ( ) +1] is

alternating iff  6= +1 for  = 0 − 1.
The valuation in (), denoted by () |=, is defined over F by induction on the length

of a formula as follows:

V0: for any  ∈  , () |= ⇐⇒ () = >;
V1: () |= ¬⇐⇒ () 2 ;

V2: () |=  ⊃  ⇐⇒ () 2  or () |= ;

V3: () |= ∧Φ⇐⇒ () |=  for all  ∈ Φ;
V4: () |= ∨Φ⇐⇒ () |=  for some  ∈ Φ;
V5: () |= B()⇐⇒ () |=  for all  with ;

V6: () |= Ir(1  ) ⇐⇒ (+1) |=  for all alternating chains [(0 0)

(1 1)  ( ) +1] with (0 0) = ( )

Definitions V0-V5 are standard, and V6 corresponds exactly to (2). The semantic valuation

for the common knowledge operator in the common knowledge logic CKL is much simpler: it

requires 1 =  =  =  and () |=  for all chains [0 1   +1] (cf., Fagin et al.

[3]).

The basic completeness theorem is as follows:

Theorem 3.1. (Basic completeness). Let  be any formula. Then, `  if and only if

() |=  for any (finite) serial models  = (( ;1  ) ) and any  ∈ .

This theorem will be proved in Section 6. The proof guarantees the finite model property,

i.e., we can restrict the latter part of the theorem to the finite models. Another restriction is

to require each model to be connected, i.e., for any   ∈  there is a chain from  to  In

Section 3.2, we give further restrictions, which will be used in Section 4.

It follows from Theorem 3.1 that a set Γ of formulae is consistent if and only if for any finite

nonempty subset Γ0 ⊆ Γ, there is a serial model  and a possible world  in  such that

() |=  for all  ∈ Γ0.
We cannot extend Theorem 3.1 to strong completeness: Γ `  if and only if () |=  for

any serial models  of Γ and  ∈ . One counterexample for the “if” direction is to take the

set in (2) as Γ and to take Ir(1  ) as  with  = 2. By V6, any model of Γ would satisfy

() |= , but, in general, for any finite subset Γ0 of Γ, ∧Γ0 `  is not provable in EIR.

The infinite-regress logic EIR is a conservative extension of KD, i.e., for any formula 

with no occurrences of Ir(·  ·) for any  ∈  , `  in EIR ⇐⇒ `  in KD. As a result, we

can convert meta-theorems in KD (e.g., epistemic depth theorem in Kaneko-Suzuki [11]) into

EIR.

The proof of Theorem 3.1 given in Section 6 can be modified without difficulties to the logic
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EIR with Axiom T, Axiom 4 and/or Axiom 5 : ¬B() ⊃ B(¬B()) In the corresponding

cases, we need to add reflexivity, transitivity, and/or euclideanness on the accessibility relations

. Necessary modifications on the proof will be mentioned in Section 6.3. However, certain

meta-theorems given in Section 4 fail in the logic with Axioms T, 4, or 5.

3.2 Completeness with respect to ep-rooted models

Theorem 3.1 can be modified to a more convenient form that will become very useful in Section 4.

Let ( ;1  ) be a Kripke frame. We use () to denote the set of all possible worlds

’s that are accessible from  with the initial reference by player 0 = , that is, ’s for which

there is a chain [(0 0) (1 1)  ( ) +1] (0 ≥ 0) with 0 =  0 =  and  = +1.

Let 0 ∈ We say that a frame ( ;1  ) is ep-rooted at 0 iff it satisfies

{0}1(0) (0) are mutually disjoint. (7)

Note that if ( ;1  ) is ep-rooted at 0, then 0 ∈ (0) for all . The union {0} ∪
1(0) ∪  ∪(0) consists of 0 and the worlds accessible from 0 It may be possible for

 in this set to be accessible from some world  ∈  − {0} ∪1(0) ∪  ∪(0). For

semantic evaluations at 0, however, it is more important that 0 is not accessible from any

 ∈ 1(0) ∪  ∪(0) and each (0) is separated from (0) for  6= . This enables

to evaluate the truthfulness of any formula at 0 by referring only to 1(0) ∪  ∪(0)

An ep-rooted frame  at 0 is denoted as  = ( ;0;1  ) The set of ep-rooted

serial frames is a proper subset of the set of serial frames. Nevertheless, we have the following

theorem, which will be proved in the end of this section.

Theorem 3.2. (Completeness with respect to ep-rooted models). Let  be any formula.

Then, `  if and only if (0) |=  for any ep-rooted serial models = ((0;1  ) ).

Although the sematic requirement here is weaker than in Theorem 3.1, this theorem asserts

that validity remains equivalent. Here, the semantic valuation is stated only at the root 0 for

each rooted model  = ((0;1  ) ) The other parts 1(0) (0) are needed

to evaluate B1(·) B(·) at 0 and the remaining part  − {0} ∪1(0) ∪  ∪(0) is

not used at all. For simplicity, we still allow this remaining part to be nonempty.

Theorem 3.2 fails with Axiom T, because reflexivity required for  is violated by (7). With

Axiom 4, Theorem 3.2 remains if transitivity required for each  in  is compatible with(7).

The only-if part of Theorem 3.2 directly follows from Theorem 3.2. We prove the if part.

First, let us prove the following lemma.

Lemma 3.1. . Suppose that  = ( ) = (( ;1  ) ) is a serial model, and choose a

fixed  ∈ . Then, there is an ep-rooted serial model ∗ = (( ∗ ∗0;
∗
1  

∗
) 

∗) such that
for any formula ,

() |=  if and only if (∗ ∗0) |=  (8)

Proof. Let ∗0 be a new symbol. We define an ep-rooted model

∗ = ( ∗ ∗) = (( ∗ ∗0;
∗
1  

∗
) 

∗)
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as follows: for  ∈ 

 ∗
 = {( ) :  ∈} (9)

∗ = {(∗0 ( )) : ( ) ∈ } ∪ {[( ) ( )] : ( ) ∈   ∈ }

and

 ∗ = {∗0} ∪ ∗
1 ∪  ∪ ∗

  (10)

∗(∗0 ) = ( ) ∗(( ) ) = ( ) for all  ∈   ∈ 

Each  ∗
 is a copy of  in that the restriction of ∗ to  ∗

 is essentially the same as

(( ;1  ) ). That is, we have a natural bijection  between  and  ∗
  This bijection

 preserves the structure of the accessibility relations    ∈  and also the truth assignment

 . This preservation includes the fact that for  6=   ∗
 and  ∗

 are entirely separated and

also the fact that ∗0 is not referred at all from  ∗
 . This implies that for each  ∈  and each

 ∈ ,

(∗ ( )) |=  if and only if () |=  (11)

On the other hand, at ∗0 ( ) is referred by ∗ as  is referred at  by  Thus, the new

frame  ∗ is ep-rooted and serial.

Let us see (8). Consider each  ∈  The accessibility relation ∗ at 0 keeps the same
structure of  at  while ( ) is used when  is referred. Also, ∗ in  ∗

 preserves the same

values as  in  ∗
  and ∗ at 0 coincides with  at  The equivalence (8) follows from these

facts and (11).¥

Proof of Theorem 3.2. We show the contrapositive of the if part. Suppose 0  Then, by

Theorem 3.1, there is a KD-model  = ( ) such that () 2  for some  ∈  By

Lemma 3.1, we have an ep-rooted model ∗ = (( ∗ ∗0;
∗
1  

∗
) 

∗) so that (∗ ∗0) 2 .

¥

4 Metatheorems for subjectivity

In this section we give few metatheorems that demonstrate the subjectivity of agents’ thinking

in our EIR.

4.1 A Scope Theorem

One critical feature of EIR is that each player enjoys the logical ability described by the classical

logic, and their reasonings are purely subjective in the sense that they are independent of the

objective situation. These features are captured by our next theorem, called the scope theorem,

as it states that we may change the epistemic scope from the inside player to the outside analyst

when making inferences in EIR. As shown below, such independence does not exit if we impose

Axiom 4 or Axiom T, and hence the choice of KD is crucial to maintain these features. Our

proof utilizes the convenience of ep-rooted models. Scope Theorem is also crucial to our proof

of Theorem 2.1, which is given right after it.

11



Theorem 4.1. (Scope Theorem 1): Let  ∈ 

(i): Let  be formulae. Then, the following statements are equivalent:

(a) `  ⊃ ; (b) ` B( ⊃ ); and (c) ` B() ⊃ B().

(ii): Let  be formulae. Then, the following statements are equivalent:

(a) `  ⊃ ¬; (b) ` B( ⊃ ¬); and (c) ` B() ⊃ ¬B().

Proof. (i): It is easy to see () =⇒ () =⇒ (). Here, we show () =⇒ (), and prove its

contrapositive. Suppose 0  ⊃ . Then, by the completeness part of Theorem 3.2, there is

an ep-rooted model  = ( ) = ((0;1  2) ) such that (0) 2  ⊃ , i.e.,

(0) |=  and (0) 2 . We add a new element ∗0 to  as follows:

 ∗ = ∪ {∗0}; and ∗ =  ∪ {(∗0 0)} for  ∈ 

This is a KD-frame (but not ep-rooted). Let ∗ be the assignment such that ∗( ·) = ( ·)
for all  ∈  and ∗(∗0 ·) = (0 ·). Let ∗ = (( ∗ ∗1  

∗
) 

∗). Then, (∗ 0) |= 

and (∗ 0) 2 , which imply (∗ ∗0) |= B() and (
∗ ∗0) 2 B() Hence, (

∗ ∗0) 2
B() ⊃ B() Thus, 0 B() ⊃ B() by the soundness part of Theorem 3.1.

(ii): We show () =⇒ () Let ` B() ⊃ ¬B() Then {B()B()} is inconsistent, so
` B( ∧ ) ⊃ B(¬ ∧ ) By (1) above, we have `  ∧  ⊃ ¬ ∧ ; so `  ⊃ ¬.¥

Theorem 4.1 fails with Axiom 4 and/or with Axiom T. A counter example in EIR2(4) is an

instance of Axiom 4 itself: ` B() ⊃ BB() but 0  ⊃ B() A counter example in EIR
2(T) is:

` B(¬B()∧)) ⊃ B(¬∧) in EIR2(T) Indeed, since ` B(¬B()∧)) ⊃ B(¬B())∧B()

and then ` B(¬B() ∧ )) ⊃ ¬B() ∧ B() Thus, B(¬B() ∧ ) is contradictory; and so
` B(¬B() ∧ )) ⊃ B(¬ ∧ ). On the other hand, 0 ¬B() ∧  ⊃ ¬ ∧  which is obtained
by constructing a counter model.

Proof of Theorem 2.1.(i): First, we see that Rule IRI is admissible in the logic EIR
In,

Suppose the upper formulae of IRI are proved, i.e., `  ⊃ B()∧B(∧ 6=) for all  ∈ 

Then, by Nec, we have ` B( ⊃ B() ∧ B(∧ 6=)) for all  6=  Hence, All the upper

formulae of IRIIn are provable. Hence, by IRIIn  we have `  ⊃ Ir(1  ) It is similar

that Rule IRIIn is admissible in the logic EIR: We use Theorem 4.1.(1) in the start.

(ii): Again, we show that IRI is admissible in EIR
HK,2 and that IRI

HK2
 is admissible in

EIL2 Suppose `  ⊃ B() ∧ B() and `  ⊃ B() ∧ B() The latter implies

` B() ⊃ BB() ∧BB()These imply `  ⊃ B() ∧BB() ∧BB() Hence,

`  ⊃ Ir(1 2) by IRIHK2  Conversely, suppose `  ⊃ B()∧BB()∧BB() Then,

let  = B() ∧B() Then, `  ⊃ B() ∧B() and also `  ⊃ B() ∧B()

Thus, by IRI `  ⊃ Ir(1 2)¥
Theorem 4.1 can be extended to the Ir operator. However, it requires the contents of the

operator have proper scopes, and we need an epistemic separation theorem for that purpose,

which is introduced in the next subsection.

4.2 Epistemic Separations and Disjunction Properties

This section presents several results, which illustrate that each player’s subjective inferences are

independent from those of other players in EIR. This principle is formalized by our Separation
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Theorem (Theorem 4.2). It also enables us to obtain the corresponding Scope Theorem for the

infinite regress operators (Theorem 4.1). We also obtain a theorem on disjunction properties

for the belief operator (Theorem 4.4). The first two theorems will be used in a game theoretic

context in Section 5. Weaker forms of the first and the third theorems were given for the

epistemic logic GL of shallow depths in Kaneko-Suzuki [11].

4.2.1 Epistemic separation theorem

First, let 0 1   be a partition of  , where some ’s are allowed to be empty. For

 ∈  we say that a formula  is -indecomposable iff  ∈  or the outermost symbol of 

is B(·) or Ir(·  ·), and that  is an -formula iff it is generated only from -indecomposable

formulae with the four logical connectives. A nonepistemic formula including only propositional

variables in 0 is called a 0-formula. For example, B(B() ⊃ ) is an -formula, and so is

B(B() ⊃ ) ∧  if  ∈  Also, Ir(1  ) itself is an -formula. We note that these

-formulae for  ∈  and 0-formulae are relative to the given partition (0 1  ) of

 . For simplicity, we let ∗ = {0} ∪  ; a 0-formula is also expressed as an -formula for

 ∈ ∗

The Separation Theorem below shows that we can discuss each player’s logical inferences

independently of others’ beliefs and inferences in EIR. In our game-theoretical applications,

this theorem is crucial to allow for a consistent framework of subjective beliefs and inferences

where players may hold completely different views about the game situation. We take into

account the partition of the propositional variables into (0 1  ), which allow more

freedom for game theoretical applications than in [11].

Theorem 4.2. (Epistemic Separation for EIR): Let Γ be a set of -formulae and  an

-formula for  ∈ ∗. We let Γ = ∪∈∗Γ Then,
(o): Γ is consistent if and only if Γ is consistent for all  ∈ ∗.

(i): Suppose that Γ is consistent. Then, Γ ` ∧∈∗ if and only only if Γ `  for  ∈ ∗.

(ii): Γ ` ∨∈∗ if and only only if Γ `  for some  ∈ ∗.

Proof. In the following, for any set Λ of formulae, we abbreviate () |=  for all  ∈ Λ as
() |= Λ. We stipulate () |= ∅
(o): The if part is essential. Suppose the consistency of Γ for all  ∈ ∗. Let Γ0 be a finite
subset of Γ We let Γ0 = Γ

0 ∩ Γ for  ∈ ∗. For each  ∈ ∗, there is an ep-rooted model
  = (   ) = ((  

0;

1  


) 

) such that (  
0) |= Γ0. Recall that each formula in

Γ0 is an -formula. For  = 0, only the valuations at the root 00 is relevant; and for  ∈  , only

the valuations at the set {
0} ∪ 

 (

0) (recall 


 (


0) := { ∈   : 

0

}) are relevant.

These facts enable us to combine the sets  
 (


0)  ∈  with 00 and construct the truth

valuations appropriately.

We define ∗ = ( ∗ ∗) = (( ∗ ∗0;
∗
1  

∗
) 

∗) with ∗0 = 00 as follows:

 ∗ = {∗0} ∪ 1
1 (

1
0) ∪  ∪

 (

0 ) (12)

for  ∈  ∗ = {(∗0 ) : (
0 ) ∈ 

} ∪ (13)

{( ) :  ∈ ∗  6= 
0 and ( ) ∈ 1 ∪  ∪

 };
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∗(∗0 ) =  (
0 ) if  ∈   ∈ ∗; (14)

∗( ) =  ( ) if  ∈   ∈ 
 (


0)  ∈ ∗

Thus, the new root, ∗0, and the partial worlds, 
1
1 (

1
1) 


 (

1
), are connected keeping

the original accessibility relations by (13). Condition (14) makes ∗ coincide with  (
0 ) if

 ∈   for  ∈ ∗ and also ∗( ·) is the same  ( ·) in  
 (


0)  ∈  .

Now we show that (∗ ∗0) |= Γ0. First, by (14), for any  ∈ ∗ and  ∈  , (∗ ∗0) |= 

if and only if (  
0) |= . Because (0 00) |= Γ00, it holds that (∗ ∗0) |= Γ00. Let

 ∈  be fixed. Then, by an induction argument, it holds for any  ∈  
 (


0) and any 

(∗ ) |=  ⇐⇒ (  ) |=  This implies (∗ ∗0) |= B() ⇐⇒ (  
0) |= B() and

also (∗ ∗0) |= Ir(A) ⇐⇒ (  
0) |= Ir(A). These facts imply that for  ∈ ∗, if  ∈ Γ0

then (∗ ∗0) |= . That is, ∗ is a model for Γ0. Because Γ0 is an arbitrary finite subset of Γ,
this shows that Γ is consistent.

(i): It suffices to show the only-if part. We show its contrapositive: Γ 0  for some  ∈ ∗

implies Γ 0 0 ∧1 ∧  ∧, that is, for any finite subset Γ
0 ⊆ Γ, Γ0 0 0 ∧1 ∧  ∧.

Suppose Γ 0  for some  ∈ ∗. Let Γ0 ⊆ Γ be an arbitrary finite subset. Since Γ is
consistent, we have an ep-rooted model ∗ = ( ∗ ∗) = (( ∗ ∗0;

∗
1  

∗
) 

∗) such that

(∗ ∗0) |= Γ0 (15)

First, suppose that Γ0 0 0; hence Γ
0
0 0 0 where Γ

0
 = Γ

0 ∩Γ for  ∈ ∗. By Theorem 3.2,

we have another ep-rooted model 0 = ( 0 0) = (( 0 00;
0
1  

0
) 

0) with root 0 such

that (0 00) |= Γ
0
0 but (

0 00) 2 0. We modify 
∗ as follows: for all  ∈ ∗,

∗( ) =
½

0(00 ) if  = ∗0 and  ∈ 0
∗( ) otherwise.

Then, ∗ differs from ∗ only in ∗0 and in 0. Any formula in Γ
0
0∪{0} has only propositional

variables in 0 and is non-epistemic. Thus, ((
∗ ∗) ∗0) |= Γ00 but (( ∗ ∗) ∗0) 2 0. Since

the change in ∗0 does not affect the other parts in ∗, we have (( ∗ ∗) ∗0) |= Γ01 ∪  ∪ Γ0.
Hence, Γ0 0 0 ∧1 ∧  ∧ by Theorem 3.2 (completeness part).

Now suppose that Γ 0  for some  ∈  ; hence Γ0 0 . Then, we have an ep-rooted model

  = (   ) = ((  
0;


1  


) 

) such that (  
0) |= Γ0 and (  

0) 2 . Here, we

can assume 
0 = ∗0. Here we modify combine 

∗ = ( ∗ ∗) into ∗ = ( ∗ ∗) so that
only the part of   = (   ) relevant to player  is taken into ∗ = ( ∗ ∗) as follows:

 ∗ = {∗0} ∪
£∪∈∗ 6= ∗

 (
∗
0)
¤ ∪ 

 (

0);

∗
 = [∗ ∩

£∪∈∗ 6=h( ∗
 (

∗
0) ∪ {∗0})× ∗

 (
∗
0)i
¤
]

∪[
 ∩ [( 

 (

0) ∪ {

0})× 
 (


0)]] for all  in ∗;

 ∗( ) =
½

 ( ) if  ∈ 
 (


0) ∪ {∗0} and  ∈ 

∗( ) otherwise.

Since (  
0) |= Γ0 by the choice of   and (∗ ∗0) |= Γ0 by (15), we have (∗ ∗0) |= Γ0

and (∗ ∗0) |= Γ0 for any  ∈ ∗ with  6=  Hence, (∗ ∗0) |= Γ0 By (  
0) 2  we

have (∗ ∗0) 2 . By this and Theorem 3.2, we have Γ0 0 0 ∧1 ∧  ∧.
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(ii): This can be proved in a similar manner to (i), without assuming the consistency of Γ¥

Theorem 4.2 states that the provability of a statement on the entire situation can be

decomposed into each player’s subjective perspective as well as the objective situation, and

the inference in each component is independent of the other. Given this decomposition, we

can focus on each player’s provability and the objective situation separately. The choice of

KD is crucial to obtain this separation result. Indeed, Theorem 4.2 fails with Axiom T,

although it remains valid with Axiom 4. A counter example against (o) is as follows: Let

Γ0 = {}Γ1 = {B1()}Γ2 = {B2(¬)} Then Γ0 ∪ Γ1 ∪ Γ2 is inconsistent in the pres-
ence of Axiom T, but each formula is consistent. This gives also a counterexample for (ii):

Γ0 ∪Γ1 ∪Γ2 `  ∨B1()∨B2(¬) by Axiom T, but  0  B1() 0 B1() and B2(¬) 0 B2(¬)
An example against (i) is as follows: { ⊃ }∪ {B1()}∪ {B2()} `  holds under Axiom T but

 ⊃  0 .

We end this subsection with the Scope Theorem for the formula of the form Ir(A) ⊃ Ir(C),
which also serves as an application of Theorem 4.2 because of the interactive nature of the infinite

regress operator.

Theorem 4.3. (Scope Theorem 2): Let  ∈  Let   be a -formula or a 0-formula

for all  ∈  . Suppose that Ir(A) is consistent. Then, the following statements are equivalent:

(a) ` ( ⊃ ) for each  = 1  ; (b) ` Ir(A ⊃ C); (c) ` Ir(A) ⊃ Ir(C)

Proof. It follows from Lemma 2.2.(4) that () =⇒ () By Lemma 2.2.(1), we have () =⇒
() Consider () =⇒ () Suppose ` Ir(A) ⊃ Ir(C) By Theorem 2.2, this is equivalent

to ` B[ ∧ [∧ 6=Ir(A)]] ⊃ B[ ∧ [∧ 6=Ir(C)]] By (1) of Theorem 4.1.(1), we have `
 ∧ [∧ 6=Ir(A)] ⊃  ∧ [∧ 6=Ir(C)] i.e., {} ∪ {Ir(A) :  6= } `  ∧ [∧ 6=Ir(C)] Since
Ir(A) is consistent, ∧ [∧ 6=Ir(A)] is also consistent by Axiom D. Then, since both   are

either -formulae or 0-formula, and since Ir(A) Ir(C) are -formulae, we have, by Theorem

4.2.(1), `  ⊃  and ` Ir(A) ⊃ Ir(C) for all  6= . Now we repeat the same argument, we

have `  ⊃  for all  ∈  .¥

4.2.2 Epistemic disjunction properties

In EIR we have various disjunction properties. Here, we mention the following theorem pre-

senting two results. The first is an extension of the theorem given for the epistemic logic GL
in Kaneko-Suzuki [11] to the logic IRL The second is an extension to various players, which

will be applied to game theoretic prediction/decision statement in Section 5. Here, let  be a

nonempty subset of  and we denote ∧∈B() by B(C)

Theorem 4.4. (Epistemic Disjunction Properties): (i): Let  ∈  Suppose that Λ and

Θ are both finite nonempty sets of formulae. Then,

B(Λ
) ` ∨B(Θ

) if and only if B(Λ
) ` B() for some  ∈ Θ

(ii): Let Φ = Π∈Φ  where Φ a finite nonempty set of formulae for  ∈  Then,

B(A) ` ∨C∈ΦB(C) if and only if B(A) ` B(C) for some C ∈ Φ 

Proof. (i): The only-if part is essential, and we prove its contrapositive. Let Θ = {1  }
Suppose B(Λ) 0 B() for any  = 1  By Theorem 3.2, for each  = 1  we have an
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ep-rooted KD-models   = (( ;
0;


1  


) 

) of B(Λ) with (
 

0) 2 B(). We can

assume without loss of generality that   ∩ 0 = ∅ for distinct  0. Let ∗0 be a new symbol.
Then, we replace each 

0 by the common 
∗
0 : That is, we let 

∗ = (∪=1( − {
0}))∪ {∗0}

and define, for  ∈  ,

∗ = ∪=1
£{(∗0 ) : (

0 ) ∈ 
} ∪ (

 − {(
0 ) : (


0 ) ∈ 

})
¤
 (16)

Finally, for any  ∈  we let ∗( ) =  ( ) if  ∈  − {
0}; and ∗(∗0 ) = 1(10 )

This ∗ = (( ∗ ∗;∗1  
∗
) 

∗) is a KD-model. We show that (∗ ∗0) |= B() for any

 ∈ Λ. Note that any  ∈  ∗ − {∗0} belongs to   − {
0} for some unique  If 

0

then ∗0
∗
 which implies that (

∗ ) |=  Since this holds for any  ∈ ∗−{∗0} we have
(∗ ∗0) |= B() In sum, 

∗ is a model of Λ

First, (  
0) 2 B() implies (

 ) 2  for some  with 
0 Since (

 ) 2 

implies (∗ ) 2  by (16), we have (
∗ ) 2  for some  with 

∗
0

∗
 Hence, (

∗ ∗0) 2
B() Since this holds for  = 1  we have (∗ ∗0) 2 ∨B(Φ). By soundness, we have

B(Γ) 0 ∨B(Φ)

(ii): The if part is straightforward. We prove the only-if part. Let  ∈  Suppose B(A) `
∨C∈Φ [∧∈B()] Since ` ∨C∈Φ [∧∈B()] ⊃ ∨∈ΦB() we haveB(A) ` ∨∈ΦB()

Let > = B(0)∨(¬B(0)) and > = B(0)∧(¬B(0)) for  ∈ ∗− where >0 = 0∨(¬0)
and >0 = 0 ∧ (¬0) Then, by B(A) ` ∨∈ΦB() we have B(A) ∧ (∧∈∗−>) `
[∨∈ΦB()]∨ (∨∈∗−>)Applying Theorem 4.2.(2) to this, we haveB() ` ∨∈ΦB()

By (1) of this theorem, we have B() ` B() for some  ∈ Φ Since  is arbitrary in  we

have B() ` B() for all  ∈  Hence, ∧∈B() ` ∧∈B() i.e., B(A) ` B(C) and

C ∈ Φ ¥

The above disjunction properties differ from those in intuitionistic logic, which require some

sufficient conditions on the referred formulae to satisfy the properties. Those formulae are

typically called Harrop formulae (cf., Troelstra-Schwichtenberg [19]). In contrast, Theorem 4.4

only requires the formulae to be within the scope of B(·).
Theorem 4.4.(i) remains with Axiom 4 but fails with Axiom T or Axiom 5. First we give

a counterexample under Axiom T. Let Γ = {B() ∨B()} Then, B(Γ) ` B(B() ∨B());

so B(Γ) ` B() ∨B() by Axiom T. If Theorem 4.4.(i) holds, then B(Γ) ` B() or B(Γ) `
B() We can eliminate the outer B(·) from those two provability statements, which preserves

provability, and then we have ∨ `  or ∨ `  in classical logic, which is impossible. Now we

consider Axiom 5. By 5, we have ` B() ∨B(¬B()). If Theorem 4.4.(i) holds, then ` B()

or ` B(¬B()), but either is impossible.

5 Game Theoretic Applications

As mentioned in Section 1, the logic EIR was motivated by prediction/decision making by an

individual player facing a game situation. Here, we return to this game theoretic problem and

discuss how we analyze the problem in EIR In particular, using the meta-theorems given in

the previous sections, we can go back and forth from inferences about the entire situation to

the decomposed individual inferences. Although we consider the general -person case here, we

refer to Hu-Kaneko [5] for the basic game theoretic results in the 2-person case whenever those

results apply to the more general case in a straightforward manner.
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5.1 Basic game theoretic concepts

We consider an -person strategic game = ( {}∈  {}∈ ) where  is a finite nonempty
set of strategies (actions) and  :  := 1 × ×  → R is a (real-valued) payoff function for

player  ∈  . We write (; −) for () when we focus on player  We say that  ∈ 
is a best response to − ∈ − iff (; −) ≥ (; −) for all  ∈  A profile of strategies

 = (1  ) ∈  is a Nash equilibrium iff  is a best response to − for each  ∈  . For each

player , a strategy  is a Nash strategy iff (; −) is a Nash equilibrium for some −. Table
1.1 is a 2-person game with 3 strategies for each players, and has a unique Nash equilibrium,

designated by the superscript  and Table 5.2 has two NE’s. We use () to denote the set

of Nash equilibria in .2

Table 5.1 Table 5.2

s21 s22 s23
s11 (2 2) (2 4) (4 0)

s12 (4 2) (3 3) (3 0)

s13 (5 5) (0 0) (2 6)

s21 s22
s11 (2 1) (0 0)

s12 (0 0) (1 2)

In a game such as Tables 5.1 and 5.2, each player’s payoff is interdependent in the sene

that they depend not only upon his own choice but also on other player’ choice. Thus, he

makes a possible decision together with a prediction about the other’s possible decisions. This

prediction/decision making is described as the two statements:

Na1: 1 chooses his best strategy against all of his predictions about 2’s choice based on Na2;

Na2: 2 chooses his best strategy against all of his predictions about 1’s choice based on Na1.

A possible final decision for 1 is determined by Na1, but because Na2 is included in Na1 as

his prediction criterion, 1 also needs to assume that 2 uses Na2 for his decision making. The

symmetric form Na2 determines a decision for player 2 with predictions about 1’s decisions.

Player 1’s decision making is described by his belief B1(Na1) in Diagram 5.1 and in his

prediction making, 1 thinks about 2’s thinking by putting himself to 2’ shoe, which is expressed

as B1B2(Na2) in Diagram 5.1. In fact, Na1 occurs again in this B1B2(Na2) which requires the

third B1B2B1(Na1) and so on. Taking Na as , the infinite sequence forms the set (1), which

is captured by the formula Ir1(1 2) in the logic EIR
2. If we make no distinction between

decisions and predictions, Diagram 5.1 collapses to Na1 ←→ Na2: Na1-Na2 is a circular definition

of decisions and predictions, i.e., as an equilibrium. This is Nash’s [16] noncooperative theory.

The logic EIR facilitates a study of his theory in a manner faithfully to prediction/decision

making.

Diagram 51

B1(Na1) → B1B2(Na2) → B1B2B1(Na1) → B1B2B1B2(Na2) → · · ·

The concept of Nash equilibrium allows different interpretations. We follow the ex ante

approach to study decision making, due to Nash [16], in Section 5.2, and we also consider it

from the ex post perspective in Section 5.3. In the ex ante approach, from player ’s subjective

viewpoint, in a profile (; −),  is interpreted as a possible final decision for  and − is
2Here we only focus on Nash equilibria in pure strategies, and hence the set () may be empty.

17



interpreted as his prediction of possible decisions for the others. Following Nash [16], we say

that  is solvable iff () = 1() ×  × (), where () = { ∈  : (; −) ∈ ()

for some  ∈ } for each  ∈  . This condition captures independent decision-making by the

players, and we shall explain this formally later.

To express the game theoretical concepts in the language of EIR we adopt the following

atomic formulae for the propositional variables  : For  ∈ 

2-ary preferences; (; ) for   ∈ ; unary decision symbol; I() for  ∈ ;

ex post observation symbol; () for  ∈ .

We denote the set of those atomic formulae for  ∈  by  . Preference expressions (; ) are

used to express the payoff functions . Decision expressions I() are intended to mean that 
is a possible final decision for player . Ex post observations () expresses the actions that are

observed by player  after the actual play of the game.

To define -formulae, we choose a partition (0 1  ) of  as follows:

0 : = the set of all atomic preference and decision expressions; (17)

 : = {() :  ∈ } for  ∈ 

With this partition, we can talk about the subjective understanding of the game situation for

each player as well as his own prediction/decision criterion.

Let the objective game be 0 = ( {}∈  {0}∈ ). Each  ∈  has a subjective

perception about the game being played, and we use  = ( {}∈  {}∈) to denote his
perceived game. We allow  to be totally different from the objective payoff function 0 for

 ∈  . In our formal language, for  ∈ {0} ∪ the payoff function  for player  ∈  in  is

expressed in terms of preferences:

 := ∧[{(; ) : 

() ≥ ()   ∈ } ∪ {¬(; ) : 


()  ()   ∈ }]

Here,  and {}∈ are assumed to be common, the game is identified by the profile of formulae
g := (1  


) and g

0 := (01  
0
)

We express “ is a best response to −” as the formula bst(; −) := ∧{(; − : ; −) :
 ∈ } We may write bst() = bst(; −) We also express “ is a Nash equilibrium” by the
formula Nash() := ∧∈bst( ; −) Note that those concepts are formulated without referring
to a specific game.

5.2 Ex ante prediction/decision making

In Section 5, we described the prediction/decision making criterion Na1 and Na2 by player 1 in a

2-person game in a non-formalized manner. Here, we give its -person version in the formalized

language. Following Hu-Kaneko [5], we also introduce two auxiliary axioms. These axioms are

intended to be the contents of player ’s basic beliefs and hence they occur in player ’s mind,

i.e., in the scope of B(·) (actually, Ir(· · ·));
N0 (Optimization against all predictions): ∧∈[I() ∧ (∧ 6=B(I())) ⊃ bst(; −)].
N1 (Predictions by the others): ∧∈ [I() ∧ (∧ 6=B(I())) ⊃ ∧ 6=B(∧ 6=B(I()))].
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N2 (Necessity of predictions): ∧∈ [I() ⊃ ∨−∈−(∧ 6=B(I()))]

For each  ∈  , let N = N0 ∧N1 ∧N2, and let N = (N1 N).

Axiom N0 translates Na into our formal language, taking the belief operators into account.

The premises of Axioms N0 and N1 are the same; I() is a possible final decision for  and

∧ 6=B(I()) his predictions. Axiom N1 requires, in the mind of player  each  6=  makes

predictions in the same manner. Axiom N2 requires predictions for any possible final decision,

and is needed in order to separate I() from his predictions ∧ 6=B(I())

We assume the infinite regress Ir(N) = Ir(N1 N) of those axioms, which corresponds

to Diagram 5.1 (adding N1∧N2  ∈ ) We take the infinite regress Ir(N) as basic beliefs for

player ’s prediction/decision making.

By Theorem 2.2, the epistemic content of Ir(A) is  ∧ (∧ 6=Ir(A)) which is denoted as
Ir (A) :=  ∧ (∧ 6=Ir(A)) Using the expression Ir , we can write a candidate for I() as
follows: for each  ∈ 

∗ () := ∨−∈−Ir [bst1(1; −1) bst(; −)] (18)

In the logic EIR(T), Theorem 2.3 implies that∗ () can be written as ∨−∈−C(nash(; −))
However, we are interested in the case without Axiom T; the reason will be manifested presently.

First, we have the following result: For  ∈  ,

Ir(N) ` B(I() ⊃ ∗ ()) for all  ∈  (19)

The 2-person version of (19) is given and proved in Hu-Kaneko [5]. Here, since it is slightly

different and more general, a proof is given in the end of this section.

The result (19) gives a necessary condition for a possible final decision I(). To have a full

characterization, we add the infinite regress of payoff functions Ir(g
) := Ir(


1  


) In fact,

this is not enough: In classical mathematics, it is a standard practice to regard a given property

as the largest set satisfying the property. The counterpart of this requirement in logic is to look

for the deductively weakest formula. In our case, we consider  families of formulae as candidates

for {I1(1)}1∈1   {I()}∈ . That is, we consider A = (A1 A) = ({1(1)}1∈1  
{()}∈) so that we substitute () for I() ( ∈   ∈ ) in the above axioms

N0-N2 We call A = (A1 A) a profile of candidate families iff A is a family of formulae

indexed by  ∈ . The resulting axioms are written as N0(A)N1(A)N2(A), and we let
N(A) = N0(A)∧N1(A)∧N2(A).

We formalize the choice of the deductive weakest families by the following axiom WF(A):
N(A) ∧ (∧ 6=B(N(A))) ∧ [∧∈hI() ∧ (∧ 6=B(I()) ⊃ () ∧ [∧ 6=B(())i]

⊃ ∧∈h() ⊃ I()i (20)

We use Ir(WF) to denote the set of all formulae of the form Ir(WF1(A) WF(A)) for
candidate families A.

Then the basic beliefs for player  are given as:

∆(g
) := {Ir(g) Ir(N)} ∪ Ir(WF)

The following theorem summarizes individual inferences involved in this decision making process

given in Hu-Kaneko [5] for the 2-person case. Later on we examine these inferences from the per-

spective of our Scope Theorems and Separation Theorem. The proofs of the claims of Theorem

5.1 can be proved in, more or less, the same manner as in [5] and we skip them.
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Theorem 5.1. Let  ∈  Let  be a game belied by player , and g its formalized payoffs.

(o) ∆(g
) is consistent for each  = 1  , and ∧∈g0 is consistent.

(i) Let  be a solvable game. Then,

∆(g
) ` B(I() ≡ ∗ ()) for all  ∈  (21)

∆(g
) ` BB(I() ≡ ∗ ()) for all  ∈  and  6= , (22)

for any  ∈  either ∆(g
) ` B(I()) or ∆(g

) ` B(¬I()) (23)

for any − ∈ − either ∆(g
) ` B[∧ 6=B(I())] or ∆(g

) ` B[∨ 6=B(¬I())]. (24)
(ii) Let  be a unsolvable game. Assume that it is generic in the sense that for all strategy

profiles entail distinct payoffs for all players. Then, for all Nash strategy  ∈ 

∆(g
) 0 B(I()) and ∆(g

) 0 B(¬I()) (25)

Claim (o) states that the individual belief set ∆(g
) is consistent (contradiction-free) in

EIR; game theoretical studies with∆(g
) could be meaningless without this consistency. Claim

(i) states that when the game  believed by  is solvable, the decision I() is characterized by

the formula ∗ () given by (18), and also each strategy is decidable as a possible final decision or
not in the mind of player  In fact, ∆(g

) ` ∗ () if  is a Nash strategy and ∆(g
) ` ¬∗ ()

if  otherwise (see Hu-Kaneko [5]). Claim (ii), however, states when  is unsolvable and is

generic, player  cannot decide for any Nash strategy, whether it is a possible final decision or

not. In fact, since (19) implies that ∆(g
) entails any non-Nash strategy as a negative decision,

he cannot reach a positive decision for any strategy3.

Hu-Kaneko [5] concentrated on the game theoretic decidability/undecidability from the per-

spective of an individual player. Our various meta-theorems in Section 4 allows us to the entire

situation via epistemic separation and, here, we analyze the relationships between different in-

dividualistic views and the objective reality. The entire situation may be described by

∆(g) := (∧∈g0 ) ∪∆1(g1) ∪  ∪∆(g
)

The set ∆(g) includes all players’ basic beliefs, as well as the objective description of the game.

Theorem 5.1.(o) shows that each ∆(g
), as well as ∧∈g0 , is consistent. Then, applying

Theorem 4.2.(o), we have:

Step 0 (Consistency): The union of beliefs ∆(g) is consistent in the logic EIR

Note that we allow g 6= g for distinct  and  (and, perhaps, 0). Thus, each player may

have completely different beliefs. However, as long as the differences are not revealed and only

exist in their minds, the entire set ∆(g) is consistent This would be inconsistent in the logic

EIR(T) with Axiom T, which requires g = g0 for all players. Instead of imposing Axiom T,

we study such (in-)consistency from the ex post point of view.

Taking ∆(g) as given, we may ask what are the decisions made by players from the analyst’s

perspective. When a player can make a decision on a strategy , the statement B(I()) or

B(¬I()) is provable. Let I∗ () be I() or ¬I() for  ∈  . Then, by Theorem 4.2.(i), we

can decompose this collective decision problem into individual ones:

3For unsolvable games with nongeneric payoffs, Hu-Kaneko [5] gives a full characterization of strategies satis-

fying (25).
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Step 1 (Decomposition): ∆(g) ` ∧∈B(I
∗
 ()) if and only if ∆(g

) ` B(I
∗
 ()) for all

 ∈ 

This guarantees that an analysis of  players’ decidabilities together is decomposed to a

study of each player’s, and vice versa. From Theorem 5.1.(i) and (ii), for each player , whether

he can reach a possible final decision or not only depend on whether  is solvable (and with a

Nash equilibrium) or not, independent of  and 0 for any  6= . Thus, by Theorem 5.1.(ii),

if one of the perceived game  is unsolvable, the the whole situation is undecidable. For the

remaining two steps we focus on the decidable case and discuss how to relate subjective inference

to objective inference in the individualistic decision problem.

Focusing on individual inferences, (21) in Theorem 5.1.(i) shows that possible final decisions

are fully characterized by the candidate formulae ∗ (). To discuss derivability of B(
∗
 ()),

we only need to refer to Ir(g
) in player ’s basic beliefs. By Theorem 4.3, we have the following

step:

Step 2 (Epistemic Reduction): Ir(g
) ` B(

∗
 ()) if and only if Ir


 (g

) ` ∗ ()

Notice that the game g believed by player  appears in ∧ 6=Ir(g), that is, player  believes
that player  believes g is being played instead of g ; player  may hold a complete different

belief from the outside analyst’s perspective.

For ’s predictions, (22) shows that his predictions about ’s decisions are fully charac-

terized by the candidate formulae ∗ (). As in the previous step, to discuss derivability of
BB(

∗
 ()), we only need to refer to Ir(g

) in player ’s basic beliefs. By applying Theorem

4.3 twice we have the following step:

Step 3 (Epistemic Reduction for Predictions): Ir(g
) ` BB(

∗
 ()) if and only if

Ir(g
) ` ∗()

In Step 3, the prediction problem for player  is reduced to his simulated inference for player

. However, note that in his simulation,  assumes  also believes that the game being played

is the same as ’s perception. In this sense, although inferences per se are purely objective and

described by classical logic, players differ in their basic beliefs, i.e., the starting points of their

inferences.

Proof of (19). Let  ∈  and  ∈  be fixed. First, we have the first claim, which corresponds

to the content version of Rule IRI;

(0): for any formulae   ∈  and  = (1  ) if `  ⊃  ∧ (∧ 6=B()) for all

 ∈  then `  ⊃ Ir(A)
This can be proved without much difficulty.

Now, the following step (1) is crucial and different from the corresponding step in [5].

(1): Ir [N011 N01] ` I() ∧ (∧ 6=B(I())) ⊃ Ir [bst1(1; −1) bst(; −)];
(2): Ir [N1 N] ` I() ⊃ ∗().

To prove (1), we let () := Ir

 [N011 N01] ∧ [I() ∧ (∧ 6=B(I()))]. We show that

` () ⊃ bst(; −) ∧ (∧ 6=B(()) (26)

Once this is proved, we have, by (0), ` () ⊃ Ir [bst1(1; −1) bst(; −)] The first
part of (26), ` () ⊃ bst(; −), comes from N0 and I() ∧ (∧ 6=B(I())). Consider
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the second part. Let  6= . By Theorem 2.2, we have ` Ir [N011 N01] ⊃ N1. Hence,

` Ir [N011 N01]∧I()∧ (∧ 6=B(I())) ⊃ ∧ 6=B(∧ 6=B(I())) Hence,

` () ⊃ ∧ 6=B [B(I()) ∧ I())]

This together with ` Ir [N011 N01] ⊃ ∧ 6=B(Ir

 [N011 N01]) implies ` (; −) ⊃

∧ 6=B(( ; −))

Now we consider (2). It follows from (1) that

Ir [N011 N01] ` I() ∧ (∧ 6=B(I())) ⊃ ∨−∈−Ir [bst1(1; −1) bst(; −)]

This is equivalent to Ir [N011 N01] ` (∧ 6=B(I())) ⊃ (I() ⊃ ∗ ())Hence Ir

 [N011 N01] `

∨−∈−(∧ 6=B(I())) ⊃ (I() ⊃ ∗ ()). By adding N2 to Ir

 [N011 N01], we delete

the first disjunctive formula, i.e., Ir [N1 N] ` I() ⊃ ∗ ().¥

5.3 Consistency between ex ante predictions and ex post observations

In our analysis of the ex ante decision/prediction making, all interactions occur in each player’s

mind but not among the players in the physical world. From this ex ante viewpoint, we have

used Separation Theorem to study each player’s subjective decision/prediction making. Here we

introduce external interactions through actual plays and ex post observations. Once the game

is played and the actions taken are observed by the players, we can study the potential conflicts

arising from a player’s ex ante predictions about the others and his ex post observations.

To connect ex ante predictions to ex post observations, we impose the following axiom:

EX := ∧{() ⊃ B(I()) ∧ [∧ 6=BB(I())] :  ∈ } (27)

Recall that () means that player  observes  as the actual play. EX states that if a profile

 = (; −) is observed ex post, then  becomes a possible final decision for  and − becomes
his predictions of others’ possible decisions.

Now, assuming that a particular outcome,  ∈ , is observed (by all players), and, for each

player  ∈  , we consider the set

Γ̂ := ∆(g
) ∪ EX ∪ {()} (28)

In this case, the consistency of Γ̂ may be problematic. We have the following theorem.

Theorem 5.2. (Ex Post Consistencies) (i): g ∪ Γ̂1 ∪ ∪ Γ̂ is consistent if and only if Γ̂
is consistent for each  ∈  .

(ii): Suppose that  has generic payoffs4. Γ̂ is consistent if and only if 
 is a Nash equilibrium

of .

Proof. (i) is proved by Theorem 4.2.(i), just counting (),  ∈  to be -formulae as in (17).

(ii): The only-if part (the contrapositive) is proved by (19), which states that if  is not a Nash

equilibrium, then either ∆(g
) ` B(¬I( )), or ∆(g

) ` BB(¬I()) for some  6=  In

either case, it is inconsistent with EX ∪ {()} i.e., Γ̂ is inconsistent.
4This result holds for nongeneric payoffs as well, but we assume genericity for simplicity.
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To prove the if part, we first claim that if  is a Nash equilibrium, then

∆(g
) 0 B(¬I( )) and ∆(g

) 0 BB(¬I())

When  is solvable, this follows from Theorem 5.1 (i); when it is unsolvable but has generic

payoffs, this follows from Theorem 5.1 (ii). It implies that we can construct a model such

that ∆(g
) B(I(


 ))BB(I(


)) hold at a specific world. Since the truth value of (

) is

independent of those formulae, we may add it to hold in that world. This gives a model for Γ̂.

¥

Again, (i) states that the consistency of the whole statement is decomposed into that for each

player. Assertion (ii) is more substantive: player ’s observations (
) are coherent with his

ex ante basic beliefs if and only if the observed strategy profile constitutes a Nash equilibrium

in his perceived game . Theorem 5.2 shows that an observed strategy profile  is stable in

the sense that it does not bring in inconsistency in any player’s mind, if and only if  is a Nash

equilibrium for each player’s perceived game.

When the perceived game  is solvable, we may restate (ii) as

Γ̂ is consistent ⇐⇒ ∆(g
) ` B(I(


 )) ∧ [∧ 6=BB(I(


))] (29)

In this case, Γ̂ is consistent if and only if the observations are already positively predicted in

in the ex ante stage. As long as the right-hand side of (29) holds (and hence  is a Nash

equilibrium of ), player  can learn nothing from the ex post experience.

In contrast, if  is unsolvable, Γ̂ can still be consistent unless the observed behavior is

predicted not to be played in the ex ante stage, and hence, it can be consistent without the

right-hand side of (29). However, in this case, B(I(

 )) ∧ [∧ 6=BB(I(


))] are derived from

EX and (
). Then, player  may include B(I(


 )) ∧ [∧ 6=BB(I(


))], which is learned

from the previous experience, into his basic beliefs for his ex ante decision in the next play.

This introduces a two-way between ex ante decision making and ex post observations; a full

development is beyond the current paper.

6 Proof of the Soundness-Completeness of EIR

The following proof of completeness is a variant of a known proof of common knowledge logic

(cf., Fagin et al. [3] and Meyer-van der Hoek [14]). Nevertheless, since we need to take several

new steps, we give a full proof.

Since the base logic of EIR is classical logic, we use classical tautologies. Lemmas 2.1 and

2.2 list a few basic properties on B(·) and Ir(·).

6.1 Soundness of EIR

It suffices to show that all logical axioms are valid, and the four inference rules preserve validity

|=. Here, we consider these for Axiom IRA and Inference IRI.

Axiom IRA. Suppose () |= Ir(1  ). By V6, () |=  for any  with .

Hence, () |= B(). We take an arbitrary with  Let  6=  and [(0 0)  (  ) +1]
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an alternating chain with (0 0) = ( ). Then, [( ) (0 0)  (  ) +1] is alter-

nating, too. By V6, we have (+1) |=  because () |= Ir(1  ). Since

[(0 0)  (  ) +1] is arbitrary with (0 0) = ( ) we have () |= Ir(A). Since 
is arbitrary with , we have () |= BIr(A).

Inference IRI : Let D = (1 ) be an -tuple of formulae, and suppose that for all

 ∈  ,

() |=  ⊃ B() ∧B(∧ 6=) for all  ∈ (30)

Let  be arbitrary element in  . If () 2  we have () |=  ⊃ Ir(A). Now, let
() |= . Suppose that [(0 0)  (  ) +1] is an alternating chain with (0 0) =

( ). Then, we prove by induction that (+1) |=  ∧ (∧ 6=) for all  = 0  . The

induction base, i.e.,  = 0 is: Since () |= , we have () |= B() ∧ B(∧ 6=) by

(30). By 1, it holds that (1) |=  ∧ (∧ 6=). Suppose the induction hypothesis

that (+1) |=  ∧ (∧ 6=). This implies (+1) |= +1 since +1 6=  It follows

from this and (30) that (+1) |= B+1(+1)∧ B+1(∧ 6=+1). Since +1+1+2,

we have (+2) |= +1 ∧ (∧ 6=+1). This completes the induction argument. Thus,

() |=  ⊃ Ir(A). Since  is arbitrarily chosen, it holds that  |=  ⊃ Ir(A).

6.2 Completeness for EIR

As is standard, supposing 0  we construct a (finite) model  = ( ; ) = (( ;1  ); )

so that () 2  for some  ∈ In the following,  is an arbitrarily fixed formula with 0 .

We start with the following facts: Let A
 = {0  } be a finite set of formulae ( ≥ 0),

and A = A
∪{¬ :  ∈ A

}. LetW(A) be the set of maximally consistent subsets in A

We can construct a maximally consistent in the standard manner; thus, W(A) is nonempty.

We write  = ∧ for  ∈W(A) We stipulate ∧∅ to be (¬) ∨ 
Lemma 6.1. (1) if  ∈W(A) and  ≤  then either  ∈  or ¬ ∈ ;

(2) if  ∈W(A) then ∩A−1 ∈W(A−1); and if  ∈W(A−1) then ∪{} ∈W(A)

or  ∪ {¬} ∈W(A);

(3) for any consistent  ⊆ A ` ∧ ≡ ∨⊆∈W(A);

(4) ` ∨∈W(A)

Proof . (1) is standard. (4) follows from (3) taking  = ∅
(2): Consider the former: Since  ∈W(A) ∩A−1 is consistent. Also, ∩A−1 is maximal
in A−1 by (1). Now consider the latter: Let  ∈W(A−1) Then  ∪ {} or  ∪ {¬} is
consistent; in either case, it is maximally consistent in A by (1).

(3): Let  be a consistent subset of A Let A
() = { ∈ A

 :  ∈  and ¬ ∈ } If
A
() = ∅ then  is maximal; so ∨⊆∈W(A) is written as ∨{} and is equivalent to

 = ∧ itself. Let A
() 6= ∅. Take any  ∈ A

() Let A0 = A − {¬} We show
` [∨⊆∈W(A0)] ≡ [∨⊆∈W(A)] (31)

Using this, we can eliminate, by induction, all such formulae ¬ from A and then the first

formula in (31) becomes equivalent to ∧ Let us prove (31). Now, we have
` ∨⊆∈W(A0) ≡ ∨⊆∈W(A0)( ∧ ) ∨ ( ∧ ¬)
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Since  includes  one of the disjuncts of the latter is contradictory; a contradictory formula

can be deleted from the disjunction. The the remaining one  ∪ {} or  ∪ {¬} is consistent
and also maximal in A. Thus, the latter formula is equivalent to ∨⊆∈W(A)¥

Now, suppose 0  throughout the following. Now, we construct a model  = ( ) =

(( ;1  ) ) so that () 2  for some  ∈

We denote the following set, by SI()

∪∈{B()BIr(C) Ir(C) : Ir(C) is a sub-formula of  and  6= } (32)

and we let Sub() = { :  is a sub-formula of }∪SI() Then, let Sub() = Sub()∪
{¬ :  ∈ Sub()}Now, we denote, by Con() :=W(Sub()) the set of maximally consistent
subsets of Sub() Then, we can find a  ∈ Con() so that

 ∈  (33)

Indeed, the supposition that 0  implies the consistency of ¬; thus, we can find a  for (33)

by Lemma 6.1.(1).

The following lemma is standard.

Lemma 6.2. . For each  ∈ Con(), we have
(1): for any ¬ ∈ Sub(), either  ∈  or ¬ ∈ ;

(2): for any ( ⊃ ) ∈ Sub(), ( ⊃ ) ∈  if and only if ¬ ∈  or  ∈ ;

(3): for any ∧Φ ∈ Sub(), ∧Φ ∈  if and only if  ∈  for any  ∈ Φ;
(4): for any ∨Φ ∈ Sub(), ∨Φ ∈  if and only if  ∈  for some  ∈ Φ.

We denote, by −B  the set { : B() ∈ } for any set of formulae . Now we define a
model  = ( ) = (( ;1  ) ) as follows:

M1:  = Con();

M2:  = {( ) ∈ 2 : −B ⊆ } for all  ∈  ;

M3: for any ( ) ∈ ×  , ( ) = > if and only if  ∈ .

We show that  = ( ) is a model for the logic EIR

Lemma 6.3. . The relation  is serial.

Proof . Let  ∈  Then, −B is consistent; hence there exists some  ∈ Con() such that
−B ⊆  i.e., ( ) ∈ . Indeed, if ` ∧−B ⊃ (¬ ∧) for some  then by Nec and Axiom
K, ` ∧ ⊃ B(¬∧); so by Axiom D,  is inconsistent, a contradiction to  ∈ = Con().¥

We claim that for any  ∈ Sub() and any  ∈ ,

 ∈  if and only if () |=  (34)

By (33), we have some  ∈  with  ∈  Once (34) is shown, we have () 2 . Thus, it

remains to show (34).

Now, (34) is shown by induction on the length of the formula  in Sub(). By M3, (34)

holds for any  ∈  . Let  be not a propositional variable. Suppose that (34) holds for any

25



sub-formula of . We consider three cases divided by the outermost connective of 

(i) When  is expressed as ¬,  ⊃ 0, ∧Φ or ∨Φ, (34) follows from Lemma 6.2.

(ii) Consider  = B(
0). First, we show that () |= B(

0) implies B(
0) ∈ . Suppose

() |= B(
0). We claim that −B ∪ {¬ 0} is inconsistent. Suppose it is consistent. Then

there exists some  ∈ such that −B ∪ {¬ 0} ⊆ ; so  0 ∈ . By the induction hypothesis,

() 2  0. Since −B ⊆  we have  and hence () 2 ¬B(
0), a contradiction.

Thus, −B ∪ {¬ 0} is inconsistent; so ` ∧−B ⊃  0. This implies ` ∧ ⊃ B(
0). Thus,

B(
0) ∈ .

Conversely, suppose that B(
0) ∈ . We have  ∈  for any  with , because

 ∈ −B ⊆ . By the induction hypothesis, () |= . Hence () |= B().

(iii) Here we show that (34) holds for the formula  = Ir(C) = Ir(1  ). The crucial

part is the if statement, which is proved using Lemma 6.1.

(Only-if ): Suppose Ir(C) ∈ . Let [(0 0)  (  ) +1] be an alternating chain with

(0 0) = ( ). We show, by induction, that  and Ir+1(C) are in +1 for all 0 ≤  ≤ 

This implies () |= Ir(C) since the chain is arbitrary.
Let  = 0. Since ` Ir(C) ⊃ B()∧B(∧ 6=Ir(C)) by IRA, we haveB()BIr(C) ∈ 

for all  6= . Because (1) ∈ , 
−B ⊆ 1; so  ∈ 1 and Ir1(C) ∈ 1. Suppose that

  Ir+1(C) ∈ +1. By IRA+1 , we have B+1(+1)B+1(Ir(C)) ∈  for all  6= +1.

Again, since (+1 +2) ∈ +1 , i.e., 
−B+1

+1 ⊆ +2, we have +1 ∈ +2 and Ir+2(C) ∈
+2 . This concludes the induction argument. Thus,  ∈ +1.

(If ): Suppose () |= Ir(C). We define  
C = { : () |= Ir(C)} for  ∈  Recall the

definition  = ∧ for  ∈ . Let 



C

= ∨{ :  ∈

C}. We show that for  ∈ 

` 



C

⊃ B() ∧B

³
∧ 6=

C

´
 (35)

Once this is proved, using IRI, we have `  
C
⊃ Ir(C) which together with `  ⊃  

C

implies `  ⊃ Ir(C) Thus, Ir(C) ∈ . Now, we prove (35)

We first show that ` 



C

⊃ B(). Let  ∈ 

C. Since () |= Ir(C) we have,

by V6, (0) |=  for any  with 
0. By the induction hypothesis for (34),  ∈ 0.

Since −B ⊆ 0, B() ∈ ; so `  ⊃ B(). Since this holds for any  ∈ 

C we have

` 



C

⊃ B().

Now we show that ` 



C

⊃ B(
C
) for any  6= . Let  ∈ 


C. It suffices to show that

`  ⊃ B(
C
). It follows from Lemma 6.1.(1) that ` 0 ⊃ ¬ for any distinct 0  ∈  ;

this together with Lemma 6.1.(3) implies that ` 
C
≡ ¬(∨∈−

C
). By this equivalence,

it is enough to show

`  ⊃ B(¬) for any  ∈ − 
C (36)

Suppose that (36) does not hold for some  ∈ − 
C; that is,  and ¬B(¬) are consistent.

Now, we consider the two cases: (A): −B ⊆ ; and (B) −B *  We show that neither is

the case; so we would have (36), and (35), too.

Consider (A), i.e., . We see () |= Ir(C); indeed, let [(1 1)  (  ) +1] be

an alternating chain with (1 1) = ( ). Then, since , [( ) (1 1)  (  ) +1]
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is also an alternating chain. Since () |= Ir(C), we have (+1) |=  . This implies

() |= Ir(C) which is a contradiction to the choice of  from  − 
C

Consider (B). Then,  ∈ −B but  ∈  for some . Then, if ¬ ∈ Sub() then ¬ ∈ ;

and if ¬ ∈ Sub() then  = ¬ 0 and  0 ∈  In either case, `  ⊃ ¬, equivalently,
`  ⊃ ¬ Hence, ` B() ⊃ B(¬). Since B() ∈ , we have `  ⊃ B(¬) which
implies that  and ¬B(¬) are inconsistent.¥

7 Conclusions

We have developed the theory of the epistemic infinite-regress logic EIR. The logic EIR is

built for studies of prediction/decision making in interdependent game situations. We gave

the completeness theorems for EIR with respect to the Kripke semantics. Based on these

completeness results, we presented various meta-theorems; the entire discourse is based on the

choice of the KD-type epistemic logic, which allow us to treat subjective thinking separately for

each player. We also showed applications to game theoretic prediction/decision making.

As expressed in (1) in Section 1, the epistemic infinite regress Ir(1  ) is an infini-

tary concept, though in this paper it is captured as a fixed-point concept. Another way to

capture epistemic infinite regresses is the infinitary logic approach. In this approach, logics are

typically very large such as Karp [12] (see Heifetz [4] for infinitary epistemic logics). It would

be informative to look at the infinite-regress logic EIR from the viewpoint of the infinitary

logic approach, which leads to small infinitary logics. This will be discussed in another paper

(Hu-Kaneko-Suzuki [6]), and its relationship to the -calculus will be studied.

In Section 5, we showed applications of our theory on EIR to ex ante prediction/decision

making and their interactions with ex post observations. The relationship between these two

viewpoints should be studied in a more general manner including different prediction/decision

criteria. This may give new insights to the game theory per se, as well as logic in a wider sense

including induction.

Our development raises many new questions; some questions such as a relationship to the

infinitary logic are rather purely logical (or philosophical in the mathematical sense), and some

others indicate interactive relations between subjective thinking and objective observations.

Studies on these problems will help us better understand human rational thinking and behavior.
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