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Abstract

We deal with the problem of striking a balance between marginal-
ism and egalitarianism in the class of TU cooperative games. We
introduce a new axiom, Weak Surplus Monotonicity. It states that if
the marginal contribution of a player increases, the worth of the grand
coalition increases and the cooperative surplus increases, then the pay-
off of the player should also increase. We show that a solution satisfies
Efficiency, Symmetry and Weak Surplus Monotonicity if and only if it
is a convex combination of the Shapley value, the Equal division and
the CIS value. By replacing the new axiom with a stronger axiom and
taking the dual, we obtain 11 characterizations of solutions, including
the results of Young (1985) or Casajus and Huettner (2014).

JEL classification: C71
Keywords: TU game; Shapley value; Monotonicity; Axiomatization

1 Introduction

In many fair division problems, there is the trade-off between the following
two criteria: marginalism and egalitarianism. Marginalism states that the
share of an agent should be determined by marginal contribution of the
player. Egalitarianism states that the total surplus should be divided as

∗JSPS Research Fellow. Graduate School of Economics, Waseda University, 1-6-1,
Nishi-Waseda, Shinjuku-ku, Tokyo 169-8050, Japan (sidehand@toki.waseda.jp)

†Faculty of Political Science and Economics, Waseda University, 1-6-1, Nishi-Waseda,
Shinjuku-ku, Tokyo 169-8050, Japan (funaki@waseda.jp)

1



equally as possible. The question is how to strike a balance between the two.
We tackle this problem under the assumptions that agents have transferable
utility and side payment is allowed. Namely, we consider the class of TU
cooperative games.

We introduce monotonicity axiom that seems desirable from the two cri-
teria. The new axiom, which we call Weak Surplus Monotnicity, states the
following: if the marginal contribution of a player increases, the worth of
the grand coalition increases and the cooperative surplus increases, then the
final payoff of the player also increases. The axiom is marginalistic in the
sense that marginal contribution is taken into account, and also has some
flavor of egalitarianism since the cooperative surplus and the total payoff
matter. We show that a distribution rule satisfies Efficiency, Symmetry and
Weak Surplus Monotonicity if and only if it is a convex combination of the
Shapley value, the Equal division and the CIS value.1 Starting from a very
weak requirement of monotonicity, we reach a convex combination of well-
known solutions. Our result indicates that taking a convex combination is a
desirable method to reflect both marginalism and egalitarianism.

The rest of this paper is organized as follows. We first refer to related
literature. Section 2 gives preliminary. In Section 3, we define the new axiom,
Weak Surplus Monotonicity, and characterize the class of distribution rules
that satisfy the axiom. In Section 4, we discuss some complementary issues
related to our theorem. Section 5 gives concluding remarks. All proofs are
in the Appendix.

Related Literature

Previous works on TU cooperative game theory have developed a variety
of distribution rules, or solutions. Many solutions are defined either by
marginalism or egalitarianism. For example, the (weighted) Shapley value
(Shapley (1953)) or the solidarity value (Nowak and Radzik (1994)) are de-
fined based on marginalism; marginal contribution determines the final payoff
of a player. The Equal division or the CIS value (Driessen and Funaki (1991))
are defined based on egalitarianism; the total payoff or the cooperative sur-
plus determines the final payoff.

Axiomatizations of a class of solutions that take a convex combination
have also been extensively discussed. Ju et al. (2007) defined and charac-
terized the Consensus value, which is a convex combination of the Shapley
value and the CIS value. van den Brink and Funaki (2009) characterized
the class of solutions that take a convex combination of the Equal division,

1The CIS value is often called the Equal Surplus Division rule in the literature.
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the CIS value and the ENSC value by using reduced game consistency. van
den Brink et al. (2013) proved that the egalitarian Shapley value (Joosten
(1996)), which is a convex combination of the Shapley value and the Equal
division, is characterized by Efficiency, Symmetry, Weak Monotonicity and
Linearity. Casajus and Huettner (2014) proved that the egalitarian Shap-
ley value is characterized by Efficiency, Symmetry and Weak Monotonicity
(without Linearity) if there are more than two players.

The result of this paper is closely related to Casajus and Huettner (2014),
hereafter C&H. Our marginal contribution is twofold. First, we generalize
the result of C&H. Our new axiom, Weak Surplus Monotonicity, is weaker
than Weak Monotonicity. Second, we give another proof of C&H. Following
Shapley (1953) or Young (1953), we prove the theorem by using a basis of the
set of all TU games.2 Our linear algebraic approach helps readers develop
intuition on why the three axioms (Efficiency, Symmetry and a variant of
Monotonicity) exclude nonlinear solutions.

2 Preliminary

Let N denote the set of n players, N = {1, · · · , n}. A function v : 2N → R,
satisfying v(∅) = 0, is called a game. For each non-empty S ⊆ N , v(S)
represents the attainable payoff for players in S. Let Γ denote the set of all
games.

Let v ∈ Γ, i, j ∈ N be fixed. For each S ⊆ N\i, we define the marginal
contribution of player i to coalition S by ∆iv(S) = v(S ∪ i)− v(S).3 Let ∆iv
denote the vector of ∆iv(S), S ⊆ N\i.

A solution is a function from Γ to Rn. Let v ∈ Γ. The Shapley value Sh
(Shapley (1953)) is defined by

Shi(v) =
∑

S⊆N :i/∈S

(n− |S| − 1)!|S|!
n!

∆iv(S) for all i ∈ N.

The Equal division ED is defined by

EDi(v) =
v(N)

n
for all i ∈ N.

2Casajus and Huettner (2014) proved their result in a different way; their proof relies
on the induction on the number of symmetric players.

3N\i and S ∪ i are abbreviations of N\{i} and S ∪{i}, respectively. For simplicity, we
follow this kind of abbreviations in the remaining part.
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The CIS value and the ENSC value (Driessen and Funaki (1991)) are defined
by

CISi(v) = v(i) +
v(N)−

∑
j∈N v(j)

n
for all i ∈ N,

ENSCi(v) = v(N)− v(N\i) +
v(N)−

∑
j∈N

(
v(N)− v(N\i)

)
n

for all i ∈ N.

We define two solutions that take a convex combination of the above solu-
tions. For each α ∈ [0, 1], we define the egalitarian Shapley value (Joosten
(1996)) ESα by

ESα(v) = αSh(v) + (1− α)ED(v) for all v ∈ Γ.

For each α ∈ [0, 1], we define the Consensus value (Ju et al. (2007)) CV α by

CV α(v) = αSh(v) + (1− α)CIS(v) for all v ∈ Γ.

We say that i and j are substitutes, denoted as i ∼v j, if ∆iv(S) = ∆jv(S)
for all S ⊆ N\{i, j}. We give two basic axioms satisfied by ψ:

Efficiency (E).
∑

i∈N ψi(v) = v(N).

Symmetry (S). For any v ∈ Γ and i, j ∈ N , i ∼v j implies ψi(v) = ψj(v).

3 Weak Surplus Monotonicity and character-

ization

Under the assumption that the grand coalition forms, how should the total
payoff be divided among players? There are two important criteria: marginal-
ism and egalitarianism. We introduce an axiom that seems desirable from
both criteria. Then, we characterize the class of solutions that satisfy the
axiom.

We consider the axiom of monotonicity, which is one of the most widely
accepted axioms in distribution problems. Monotonicity in TU cooperative
game states that if the attainable payoffs for coalitions increase in a certain
way, then the payoff of a player also increases.

We revisit monotonicity axioms in previous works. Young (1985) charac-
terized the Shapley value by using the following axiom:

Strong Monotonicity (Young (1985)). Let v, w ∈ Γ and i ∈ N . If ∆i(v) ≥
∆i(w), then ψi(v) ≥ ψi(w).
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This axiom is marginalistic, because only the marginal contribution matters.
In view of the situation where players divide the total payoff, it seems rea-
sonable to take the worth of grand coalition into account. Based on this idea,
van den Brink et al. (2013) introduced the following axiom:

Weak Monotonicity (WM) (van den Brink et al. (2013)). Let v, w ∈ Γ and
i ∈ N . If ∆i(v) ≥ ∆i(w) and v(N) ≥ w(N), then ψi(v) ≥ ψi(w).

Namely, if i’s marginal contribution and the worth of the grand coalition
increases, then i’s payoff increases.

In addition to the worth of grand coalition, there is another important
factor in division problems: the stand-alone payoff. It is a convincing refer-
ence point for distributing the total payoff. TU cooperative game describes
the stand-alone payoff by the worth of singleton coalition.

From the viewpoint of stand-alone payoff, we can find room for modifi-
cation in Weak Monotonicity. Let us give an illustrative example. Consider
the 3-person game w given by

w(1) = w(2) = w(3) = 0, w(12) = w(13) = w(23) = 10, w(N) = 60.

Suppose that the game changes to the following game v:

v(1) = 0, v(2) = v(3) = 50, v(12) = v(13) = v(23) = 60, v(N) = 110.

Note that ∆iw = ∆iv and w(N) ≤ v(N). Thus, Weak Monotonicity con-
cludes that 1’s payoff increases, i.e., ψ1(w) ≤ ψ1(v). However, to determine
the change in 1’s payoff does not seem straightforward in this case. In both
games, the worths of 2-person coalitions are symmetric. On the other hand,
as for the 1-person coalitions, only the worths of 2 and 3 increase. Thus, we
can interpret that 1 is in a weaker position in v than in w. Although the
worth of grand coalition increases, the increase in the stand-alone payoffs is
much larger. In other words, the total payoff minus the sum of stand-alone
payoffs, namely cooperative surplus, decreases. So, it seems also possible that
1’s payoff decreases from w to v.

Motivated by the above argument, we give a weaker axiom than Weak
Monotonicity. In order to conclude that i’s payoff increases, we additionally
require that the cooperative surplus also increases.

Weak Surplus Monotonicity (M). Let v, w ∈ Γ and i ∈ N . If ∆i(v) ≥ ∆i(w),
v(N) ≥ w(N) and v(N) −

∑
j∈N v(j) ≥ w(N) −

∑
j∈N w(j), then

ψi(v) ≥ ψi(w).

We are now ready to state the main result. The class of solutions that
satisfy E, S and M is equivalent to the class of solutions that take a convex
combination of ES and CV .
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Theorem 1 Let n ≥ 6. Then, ψ satisfies E, S and M if and only if there
exist α, β, γ ∈ [0, 1] such that ψ = αESβ + (1− α)CV γ.

We give a remark on the assumption n ≥ 6 in Section 5. The proof of
Theorem 1 is given in Appendix A. We briefly explain the sketch of the
proof. We first decompose the set of games Γ into several linear subspaces
by using a basis introduced by Yokote and Funaki (2014). We first show
that, if ψ satisfies the three axioms, then it is a convex combination of the
solutions on each linear subspace. We also show that ψ is linear with respect
to the addition of games in some linear subspaces. By unifying the result for
each linear subspace, we obtain the result on the whole space Γ.

Weak Monotonicity seems to be a very weak condition; it states the
change in i’s payoff only when the three factors (marginal contribution, total
payoff and cooperative surplus) change as stated in the axiom. For other
cases, the axiom says nothing. Despite its weak requirement, Weak Surplus
Monotonicity suffices to characterize the class of convex combinations of well-
known solutions. Theorem 1 indicates that taking a convex combination is a
reasonable way to reflect marginalism and egalitarianism.

4 Discussions on Theorem 1

In this section, we discuss some complementary issues related to Theorem 1.

4.1 Another proof of Casajus and Huettner (2014)

Let us revisit the following theorem:

Theorem 2 (Casajus and Huettner (2014)) Let n ≥ 3. Then, a solu-
tion ψ satisfies E, S and WM if and only if there exists α ∈ [0, 1] such that
ψ = ESα.

In Appendix B, we give another proof of Theorem 2 by following the same
line of proof of Theorem 1; see also ‘outline of proof’ in Appendix A.

The merit of giving another proof is to clarify the mathematical structure
behind the theorem. We prove Theorem 2 by using a basis of the set of games.
Our linear algebraic method helps readers understand why the three axioms
exclude non-linear functions. The proof also helps us compare Theorem 2
with the theorem of Young (1985), who axiomatized the Shapley value by
using a basis.
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4.2 Axiomatization of other classes of solutions

By replacing Weak Mononiticty with a stronger axiom, we obtain character-
izations of other solutions.

Surplus Monotonicity (SM). Let v, w ∈ Γ and i ∈ N . If ∆i(v) ≥ ∆i(w) and
v(N)−

∑
j∈N v(j) ≥ w(N)−

∑
j∈N w(j), then ψi(v) ≥ ψi(w).

Strong Surplus Monotonicity (SSM). Let v, w ∈ Γ and i ∈ N . If v(i) ≥ w(i)
and v(N)−

∑
j∈N v(j) ≥ w(N)−

∑
j∈N w(j), then ψi(v) ≥ ψi(w).

Weak Grand Coalition Monotonicity (WGM). Let v, w ∈ Γ and i ∈ N . If
v(N) ≥ w(N) and v(N) −

∑
j∈N v(j) ≥ w(N) −

∑
j∈N w(j), then

ψi(v) ≥ ψi(w).

Theorem 3 Let n ≥ 6. Then, a solution ψ satisfies E, S and SM if and
only if there exists α ∈ [0, 1] such that ψ = CV α.

Theorem 4 Let n ≥ 6. Then, a solution ψ satisfies E, S and SSM if and
only if ψ = CIS.

Theorem 5 Let n ≥ 6. Then, a solution ψ satisfies E, S and WGM if and
only if there exists α ∈ [0, 1] such that ψ = αED + (1− α)CIS.

For the proofs of Theorems 3, 4 and 5, see Appendix C.

4.3 Dual of axioms

Another direction of extending Theorem 1 is to take the dual of Weak Surplus
Monotonicity. For a detailed survey on the duals of axioms, see Oishi et al.
(2013).

Consider the following axiom:

Dual Weak Surplus Monotonicity (DM). Let v, w ∈ Γ and i ∈ N . If ∆i(v) ≥
∆i(w), v(N) ≥ w(N) and v(N) −

∑
j∈N(v(N) − v(N\j)) ≥ w(N) −∑

j∈N(w(N)− w(N\j)), then ψi(v) ≥ ψi(w).

From the duality between the CIS value and the ENSC value, we obtain the
following theorem:

Theorem 6 Let n ≥ 6. Then, a solution ψ satisfies E, S and DM if and
only if there exist α, β ∈ [0, 1] such that ψ = αESβ + (1− α)ENSC.

For the proof, see Appendix D. We can also consider the duals of SM, SSM
and WGM in the same way.
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Dual Surplus Monotonicity (DSM). Let v, w ∈ Γ and i ∈ N . If ∆i(v) ≥
∆i(w) and v(N) −

∑
j∈N(v(N) − v(N\j)) ≥ w(N) −

∑
j∈N(w(N) −

w(N\j)), then ψi(v) ≥ ψi(w).

Dual Strong Surplus Monotonicity (DSSM). Let v, w ∈ Γ and i ∈ N . If
v(N)−v(N\i) ≥ w(N)−w(N\i) and v(N)−

∑
j∈N(v(N)−v(N\j)) ≥

w(N)−
∑

j∈N(w(N)− w(N\j)), then ψi(v) ≥ ψi(w).

Dual Weak Grand Coalition Monotonicity (DWGM). Let v, w ∈ Γ and i ∈
N . If v(N) ≥ w(N) and v(N) −

∑
j∈N(v(N) − v(N\j)) ≥ w(N) −∑

j∈N(w(N)− w(N\j)), then ψi(v) ≥ ψi(w).

Theorem 7 Let n ≥ 6. Then, a solution ψ satisfies E, S and DSM if and
only if there exist α, β ∈ [0, 1] such that ψ = αSh+ (1− α)ENSC.

Theorem 8 Let n ≥ 6. Then, a solution ψ satisfies E, S and DSSM if and
only if ψ = ENSC.

Theorem 9 Let n ≥ 6. Then, a solution ψ satisfies E, S and DWGM if and
only if there exist α, β ∈ [0, 1] such that ψ = αED + (1− α)ENSC.

We can prove Theorems 7, 8, 9 in the same way as Theorem 6.
Overall, based on Theorem 1, we obtain 11 characterizations of solutions

that take a convex combination. The following figure summarizes the results:

Axioms \ Solutions Sh ED CIS ENSC
Weak Surplus Monotonicity (Th. 1)

√ √ √

Dual Weak Surplus Monotonicity (Th. 6)
√ √ √

Weak Monotonicity (Th. 2)
√ √

Surplus Monotonicity (Th. 3)
√ √

Dual Surplus Monotonicity (Th. 7)
√ √

Weak Grand Coalition Monotonicity (Th. 5)
√ √

Dual Weak Grand Coalition Monotonicity
√ √

(Th. 9)
Strong Monotonicity (Young (1985))

√

Strong Surplus Monotonicity (Th. 4)
√

Dual Strong Surplus Monotonicity (Th. 8)
√

Grand Coalition Monotonicity
√

(Casajus and Huettner (2014))

Each axiom characterizes the class of solutions that take a convex combina-
tion of solutions marked by

√
.
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5 Concluding remarks

In the proofs of some lemmas, we borrow the ideas of previous works. The
proofs of Lemmas 6 and 13 are based on the proof of Claim 5 of Casajus and
Huettner (2014). The proof of Lemma 19 is based on the proof of Theorem
2 of Young (1985).

In Theorem 1, we assumed that there are at least 6 players. We give a
remark on this assumption. For n = 1, ψ is uniquely determined by E. For
n = 2, there exists a solution that satisfies E, S and M but is not a convex
combination of the three solutions; see Appendix B of Casajus and Huettner
(2014). For n = 3, 4, 5, the validity of Theorem 1 remains an open question.

It is known that, in the characterization of Young (1985), we can replace
Strong Monotonicity with Marginality. This axiom is weaker than Strong
Monotonicity, and states the following: if the marginal contribution of a
player is the same for two different games, then the payoff of the player for
the games is the same. Namely, we replace inequality in the definition of
Strong Monotonicity with equality. If we modify Weak Surplus Monotonic-
ity in this way, then Theorem 1 does not hold. Consider the following axiom:
if i’s marginal contribution, the worth of the grand coalition and the coop-
erative surplus are the same for two games, then i’s payoff is the same. This
axiom and the two basic axioms (Efficiency and Symmetry) cannot exclude a
solution that takes a linear combination of the three solutions. For example,
a solution given by 2Sh(v)− ED(v) satisfies the three axioms.

We conjecture that some other classes of solutions in TU games can also
be characterized by monotonicity. For example, it seems possible to charac-
terize the class of solutions that take a convex combination of the egalitarian
Shapley value, the CIS value and the ENSC value by using a further weaker
axiom than Weak Surplus Monotonicity. As we show in Appendix A, the
key of proof is to construct a basis of the set of games and properly decom-
pose the set. In previous studies, the unanimity basis by Shapley (1953) has
played a central role. Our reslut indicates that, by finding another basis, we
can obtain new characterizations of solutions.
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Appendix A

We prove Theorem 1. Let us give some preliminaries. For each v, w ∈ Γ and
α ∈ R, we define addition and scalar multiplication as follows: (v+w)(S) =
v(S) + w(S) for all S ⊆ N , (αv)(S) = α · v(S) for all S ⊆ N . Then, we can
identify Γ as a linear space R2n−1.

For each T ⊆ N , T ̸= ∅, we define the T -unanimity game uT (Shapley
(1953)) by

uT (S) =

{
1 if T ⊆ S,

0 otherwise.

For each T ⊆ N , |T | ≥ 2, we define ūT by

ūT (S) =

{
1 if |S ∩ T | = 2,

0 otherwise.

Note that uT = ūT for all T ⊆ N , |T | = 2.

Theorem 10 (Yokote and Funaki (2014)) The following set

{uT : T ⊆ N, 1 ≤ |T | ≤ 2} ∪ {ūT : T ⊆ N, |T | ≥ 3}

is a basis of Γ.

Define u1 =
∑

i∈N ui, u
2 =

∑
T⊆N :|T |=2 uT . Then, from Theorem 10, the

following set{
u1
}
∪ {u1 − ui : i ∈ N, i ̸= 1} ∪ {u2}

∪ {u12 − uT : T ⊆ N, |T | = 2, T ̸= {1, 2}} ∪ {ūT : |T | ≥ 3}

is also a basis. We give an example for n = 3:

u1 u1 − u2 u1 − u3 u2 u12 − u13 u12 − u23 ūN

1
2
3
12
13
23
123



1
1
1
2
2
2
3





1
−1
0
0
1
−1
0





1
0
−1
1
0
−1
0





0
0
0
1
1
1
3





0
0
0
1
−1
0
0





0
0
0
1
0
−1
0





0
0
0
1
1
1
0


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For a finite set of games V ⊆ Γ, let Sp(V ) denote the set of games expressed
by a linear combination of the games in V .4 Define

V 1 = {u1} ∪ {u2} ∪ {ūT : |T | ≥ 3}, Γ1 = Sp(V 1),

V 2 = {u12 − uT : T ⊆ N, |T | = 2, T ̸= {1, 2}}, Γ2 = Sp(V 2),

V 3 = {u1 − ui : i ∈ N, i ̸= 1}, Γ3 = Sp(V 3).

Note that Sp(V 1 ∪ V 2 ∪ V 3) = Γ.

Outline of proof

Let ψ be a solution that satisfies E, S and M. The proof consists of 5 steps.
We first prove that, in Step 1, ψ is additive (in particular, linear) with respect
to the addition of games in Γ3, i.e.,

ψ(v + v3) = ψ(v) + ψ(v3) for all v ∈ Γ, v3 ∈ Γ3. (A)

Next, we show that, in Step 2, ψ is additive (in particular, linear) with respect
to the addition of games in Γ2, i.e.,

ψ(v + v2) = ψ(v) + ψ(v2) for all v ∈ Γ, v2 ∈ Γ2. (B)

In Step 3, we endogenously derive the coefficients and show that ψ is a
convex combination of the solutions on Γ2 and Γ3. In steps 4, we show that
ψ coincides with ED on Γ1, i.e.,

ψi(v
1) =

v1(N)

n
for all i ∈ N, v1 ∈ Γ1. (C)

In step 5, we unify all the results and complete the proof. We can express
any game v by v = v1 + v2 + v3, where vj ∈ Γj, j = 1, 2, 3. Then,

ψi(v) = ψi(v
1 + v2 + v3)

(A)
= ψi(v

1 + v2) + ψ(v3)

(B)
= ψi(v

1) + ψi(v
2) + ψi(v

3)
(C)
= ψi(v

2) + ψi(v
3) +

v(N)

n
.

Since ψ is a convex combination on Γ2 and Γ3 from step 3, we conclude that
ψ is a convex convex combination on the whole space.

4Sp refers to Span. Mathematically speaking, Sp(V ) is the linear subspace in R2n−1

spanned by the vectors in V .
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Proof of Theorem 1

We use the following abbreviations:

Lemma → L, Case 1 → C1, Induction Hypothesis → IH.

The proof consists of 5 steps.
Step 1: We show the linearity of ψ with respect to the addition of v ∈ Γ3.

Lemma 1 Let i ∈ N , v ∈ Γ. Then, for any p, q ∈ N and j ∈ N , j ̸= i,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v) = q

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
.

Proof. Let p be fixed.
Induction base: If q = 1, the result holds.
Induction step: Suppose that the result holds for q = r − 1, and we
prove the result for q = r, where r ≥ 2. Choose k ∈ N\{i, j}. Define
w = v + r

p
ui − r−1

p
uj − 1

p
uk. Then,

ψj(w)− ψj(v)
M
= ψj

(
v +

r − 1

p
(ui − uj)

)
− ψj(v)

E,M
= −

[
ψi

(
v +

r − 1

p
(ui − uj)

)
− ψi(v)

]
IH
= −(r − 1)

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
,

ψk(w)− ψk(v)
M
= ψk

(
v +

1

p
(ui − uk)

)
− ψk(v)

E,M
= −

[
ψi

(
v +

1

p
(ui − uk)

)
− ψi(v)

]
M
= −

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
.

Thus,

ψi(w)− ψi(v)
E,M
= −{ψj(w)− ψj(v)} − {ψk(w)− ψk(v)}

= (r − 1)
[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
+ ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

= r
[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
. (1)

13



On the other hand,

ψi(w)− ψi(v)
M
= ψi

(
v +

r

p
(ui − uj)

)
− ψi(v). (2)

Equations (1) and (2) complete the proof. �

Lemma 2 Let i ∈ N , v ∈ Γ. Then, for any p, q ∈ N and j ∈ N , j ̸= i,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v) =

q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. Let p be fixed. Then, by letting q = p in L1,

ψi

(
v + (ui − uj)

)
− ψi(v)

L1
= p

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
,

1

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
= ψi

(
v +

1

p
(ui − uj)

)
− ψi(v).

It follows that, for any q ∈ N,

ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

L1
= q

[
ψi

(
v +

1

p
(ui − uj)

)
− ψi(v)

]
=
q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
,

which completes the proof. �

Lemma 3 Let v ∈ Γ, i, j ∈ N , i ̸= j, and p, q ∈ N. Then,

ψi

(
v − q

p
(ui − uj)

)
− ψi(v) = −

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
.

Proof. Choose k ∈ N\{i, j}. Define w = v + q
p
(ui + uj)− 2q

p
uk. Then,

ψj(w)− ψj(v)
M
= ψj

(
v − q

p
(ui − uj)

)
− ψj(v)

E,M
= −

[
ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

]
,

ψk(w)− ψk(v)
M
= ψk

(
v +

2q

p
(ui − uk)

)
− ψk(v)

L2
= 2 · q

p

[
ψk

(
v + (ui − uk)

)
− ψk(v)

]
L2
= 2

[
ψk

(
v +

q

p
(ui − uk)

)
− ψk(v)

]
E,M
= −2

[
ψi

(
v +

q

p
(ui − uk)

)
− ψi(v)

]
M
= −2

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
.
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Thus,

ψi(w)− ψi(v)
E,M
= −{ψj(w)− ψj(v)} − {ψk(w)− ψk(v)}

=
[
ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

]
+ 2

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
. (3)

On the other hand,

ψi(w)− ψi(v)
M
= ψi

(
v +

q

p
(ui − uj)

)
− ψi(v). (4)

Equations (3) and (4) complete the proof. �

Lemma 4 Let v ∈ Γ, i, j ∈ N , i ̸= j. Then, for any s ∈ Q,

ψi

(
v + s(ui − uj)

)
− ψi(v) = s

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. If s ≥ 0, L2 completes the proof. Suppose that s < 0. Then, we
can write s = − q

p
for some p, q ∈ N.

ψi

(
v + s(ui − uj)

)
− ψi(v) = ψi

(
v − q

p
(ui − uj)

)
− ψi(v)

L3
= −

[
ψi

(
v +

q

p
(ui − uj)

)
− ψi(v)

]
L2
= −q

p

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
= s

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
,

which completes the proof. �

Lemma 5 Let i ∈ N , v ∈ Γ. Then, for any λ ∈ R and j ∈ N , j ̸= i,

ψi

(
v + λ(ui − uj)

)
− ψi(v) = λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

Proof. Let λ ∈ R. Choose sequences of rational numbers {rt} and {st}
that converge to λ from below and above, respectively. Then,

rt

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
L4
= ψi

(
v + rt(ui − uj)

)
− ψi(v)

M

≤ ψi

(
v + λ(ui − uj)

)
− ψi(v)

M

≤ ψi

(
v + st(ui − uj)

)
− ψi(v)

L4
= st

[
ψi

(
v + (ui − uj)

)
− ψi(v)

]
.

By letting t→ ∞, we obtain the result. �
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Lemma 6 Let v, w ∈ Γ. Then,

ψi

(
v + (ui − uj)

)
− ψi(v) = ψi

(
w + (ui − uj)

)
− ψi(w).

Proof. Choose a game z ∈ Γ such that

z(N) ≥ v(N), z(N)−
∑
m∈N

z(m) ≥ v(N)−
∑
m∈N

v(m),∆iz ≥ ∆iv,

z(N) ≥ w(N), z(N)−
∑
m∈N

z(m) ≥ w(N)−
∑
m∈N

w(m),∆iz ≥ ∆iw.

Suppose that

ψi

(
v + (ui − uj)

)
− ψi(v) ̸= ψi

(
z + (ui − uj)

)
− ψi(z).

For any λ ∈ R,

ψi

(
v + λ(ui − uj)

)
− ψi(v)−

{
ψi

(
z + λ(ui − uj)

)
− ψi(z)

}
L5
=λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)−

{
ψi

(
z + (ui − uj)

)
− ψi(z)

}]
,

ψi

(
v + λ(ui − uj)

)
− ψi

(
z + λ(ui − uj)

)
=λ

[
ψi

(
v + (ui − uj)

)
− ψi(v)−

{
ψi

(
z + (ui − uj)

)
− ψi(z)

}]
+ ψi(v)− ψi(z).

So, by appropriately choosing λ, we obtain

ψi

(
v + λ(ui − uj)

)
− ψi

(
z + λ(ui − uj)

)
> 0.

This contradicts M. So, we must have

ψi

(
v + (ui − uj)

)
− ψi(v) = ψi

(
z + (ui − uj)

)
− ψi(z).

By applying the same argument to the games w and z, we obtain the desired
equality. �

Lemma 7 Let v ∈ Γ, i, j ∈ N , i ̸= j, and λ ∈ R. Then,

ψ
(
v + λ(ui − uj)

)
= ψ(v) + λψ(ui − uj).

Proof. By letting w = 0 in L6,

λψi(ui − uj)
L6
= λ

[
ψi

(
v + (ui − uj))− ψi(v)

]
L5
= ψi

(
v + λ(ui − uj)

)
− ψi(v).
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For player k ∈ N\{i, j},

ψk

(
v + λ(ui − uj)

)
− ψk(v)

M
= 0

E,S
= λψk(0)

M
= λψk(ui − uj).

E completes the proof. �

Step 2: We show the linearity of ψ with respect to the addition of v ∈ Γ2.
For any v ∈ Γ and i, j ∈ N , i ̸= j, define

ψij(v) = ψi(v) + ψj(v).

Lemma 8 Let v ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for
any p, q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v) = q

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
.

Proof. Let p be fixed.
Induction base: If q = 1, the result holds.
Induction step: Suppose that the result holds for q = r − 1, and we prove
the result for q = r, where r ≥ 2. Without loss of generality, suppose
that 1 = i, 2 = j, 3 = k and 4 = l. Choose players 5, 6 and define w =
v + r

p
u12 − r−1

p
u34 − 1

p
u56. Then,

ψ34(w)− ψ34(v)
M
= ψ34

(
v +

r − 1

p
(u12 − u34)

)
− ψ34(v)

E,M
= −

[
ψ12

(
v +

r − 1

p
(u12 − u34)

)
− ψ12(v)

]
IH
= −(r − 1)

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
,

ψ56(w)− ψ56(v)
M
= ψ56

(
v +

1

p
(u12 − u56)

)
− ψ56(v)

E,M
= −

[
ψ12

(
v +

1

p
(u12 − u56)

)
− ψ12(v)

]
M
= −

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
.
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Thus,

ψ12(w)− ψ12(v)
E,M
= −{ψ34(w)− ψ34(v)} − {ψ56(w)− ψ56(v)}

= (r − 1)
[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
+
[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
= r

[
ψ12

(
v +

1

p
(u12 − u34)

)
− ψ12(v)

]
. (5)

On the other hand,

ψ12(w)− ψ12(v)
M
= ψ12

(
v +

r

p
(u12 − u34)

)
− ψ12(v). (6)

Equations (5) and (6) complete the proof. �

Lemma 9 Let v ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for
any p, q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v) =

q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. Let p be fixed. Then, by letting q = p in L8,

ψij

(
v + (uij − ukl)

)
− ψij(v)

L8
= p

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
,

1

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
= ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v).

It follows that, for any q ∈ N,

ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

L8
= q

[
ψij

(
v +

1

p
(uij − ukl)

)
− ψij(v)

]
=
q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
,

which completes the proof. �

Lemma 10 Let v ∈ Γ, i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l, and p, q ∈ N.
Then,

ψij

(
v − q

p
(uij − ukl)

)
− ψij(v) = −

[
ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

]
.
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Proof. Without loss of generality, suppose that 1 = i, 2 = j, 3 = k and
4 = l. Choose players 5, 6 and define w = v + q

p
(u12 + u34)− 2q

p
u56. Then,

ψ34(w)− ψ34(v)
M
= ψ34

(
v − q

p
(u12 − u34)

)
− ψ34(v)

E,M
= −

[
ψ12

(
v − q

p
(u12 − u34)

)
− ψ12(v)

]
,

ψ56(w)− ψ56(v)
M
= ψ56

(
v +

2q

p
(u12 − u56)

)
− ψ56(v)

L9
= 2 · q

p

[
ψ56

(
v + (u12 − u56)

)
− ψ56(v)

]
L9
= 2

[
ψ56

(
v +

q

p
(u12 − u56)

)
− ψ56(v)

]
E,M
= −2

[
ψ12

(
v +

q

p
(u12 − u56)

)
− ψ12(v)

]
M
= −2

[
ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v)

]
.

Thus,

ψ12(w)− ψ12(v)
E,M
= −{ψ34(w)− ψ34(v)} − {ψ56(w)− ψ56(v)}

=
[
ψ12

(
v − q

p
(u12 − u34)

)
− ψ12(v)

]
+ 2

[
ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v)

]
. (7)

On the other hand,

ψ12(w)− ψ12(v)
M
= ψ12

(
v +

q

p
(u12 − u34)

)
− ψ12(v). (8)

Equations (7) and (8) complete the proof. �

Lemma 11 Let v ∈ Γ, i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then, for any
s ∈ Q,

ψij

(
v + s(uij − ukl)

)
− ψij(v) = s

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. If s ≥ 0, L9 completes the proof. Suppose that s < 0. Then, we

19



can write s = − q
p
for some p, q ∈ N.

ψij

(
v + s(uij − ukl)

)
− ψij(v) = ψij

(
v − q

p
(uij − ukl)

)
− ψij(v)

L10
= −

[
ψij

(
v +

q

p
(uij − ukl)

)
− ψij(v)

]
L9
= −q

p

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
= s

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
,

which completes the proof. �

Lemma 12 Let v ∈ Γ, λ ∈ R and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l.
Then,

ψij

(
v + λ(uij − ukl)

)
− ψij(v) = λ

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

Proof. Let λ ∈ R. Choose sequences of rational numbers {rt} and {st}
that converge to λ from below and above, respectively. Then,

rt

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
L11
= ψij

(
v + rt(uij − ukl)

)
− ψij(v)

M

≤ ψij

(
v + λ(uij − ukl)

)
− ψij(v)

M

≤ ψij

(
v + st(uij − ukl)

)
− ψij(v)

L11
= st

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
.

By letting t→ ∞, we obtain the result. �

Lemma 13 Let v, w ∈ Γ and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. Then,

ψij

(
v + (uij − ukl)

)
− ψij(v) = ψij

(
w + (uij − ukl)

)
− ψij(w).

Proof. Choose a game z ∈ Γ such that

z(N) ≥ v(N), z(N)−
∑
m∈N

z(m) ≥ v(N)−
∑
m∈N

v(m),∆iz ≥ ∆iv,∆jz ≥ ∆jv,

z(N) ≥ w(N), z(N)−
∑
m∈N

z(m) ≥ w(N)−
∑
m∈N

w(m),∆iz ≥ ∆iw,∆jz ≥ ∆jw.

Suppose that

ψij

(
v + (uij − ukl)

)
− ψij(v) ̸= ψij

(
z + (uij − ukl)

)
− ψij(z).
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For any λ ∈ R,

ψij

(
v + λ(uij − ukl)

)
− ψij(v)−

{
ψij

(
z + λ(uij − ukl)

)
− ψij(z)

}
L12
= λ

[
ψij(v + (uij − ukl))− ψij(v)−

{
ψij

(
z + (uij − ukl)

)
− ψij(z)

}]
,

ψij

(
v + λ(uij − ukl)

)
− ψij

(
z + λ(uij − ukl)

)
= λ

[
ψij(v + (uij − ukl))− ψij(v)−

{
ψij

(
z + (uij − ukl)

)
− ψij(z)

}]
+ ψij(v)− ψij(z).

So, by appropriately choosing λ, we obtain

ψij

(
v + λ(uij − ukl)

)
− ψij

(
z + λ(uij − ukl)

)
> 0.

This contradicts M. So, we must have

ψij

(
v + (uij − ukl)

)
− ψij(v) = ψij

(
z + (uij − ukl)

)
− ψij(z).

By applying the same argument to the games w and z, we obtain the desired
equality. �

Lemma 14 Let v ∈ Γ, λ ∈ R, and i, j ∈ N , i ̸= j, k, l ∈ N\{i, j}, k ̸= l. If
v(i) = v(j), then,

ψi

(
v + λ(uij − ukl)

)
− ψi(v) = λψi(uij − ukl).

Proof. Case 1: Suppose that i ∼ j in v. Then,

2
[
ψi

(
v + λ(uij − ukl)

)
− ψi(v)

]
S
= ψij

(
v + λ(uij − ukl)

)
− ψij(v)

L12
= λ

[
ψij

(
v + (uij − ukl)

)
− ψij(v)

]
L13
= λψij(uij − ukl)

S
= 2λψi(uij − ukl).

Case 2: Suppose that i � j in v. By Pinter (2012), there exists a game
w ∈ Γ such that

∆iv = ∆iw, i ∼ j in w.

Note that w(j) = w(i) = v(i) = v(j). Choose k, l ∈ N\{i, j}, k ̸= l, and
define z ∈ Γ by

z = w +
∑

m∈N\{i,j}

(
v(m)− w(m)

)
um

+
(
v(N)− w(N)−

∑
m∈N\{i,j}

(
v(m)− w(m)

))
ukl.
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Then, ∆iv = ∆iz, v(m) = z(m) for all m ∈ N , v(N) = z(N) and i ∼ j in z.

ψi

(
v + λ(uij − ukl)

)
− ψi(v)

M
= ψi

(
z + λ(uij − ukl)

)
− ψi(z)

C1
= λψi(uij − ukl),

which completes the proof. �

Lemma 15 Let v ∈ Γ, λ ∈ R, and S, T ⊆ N , |S| = |T | = 2, S ̸= T . If
v(i) = v(j) for all i, j ∈ N , then

ψ
(
v + λ(uS − uT )

)
− ψ(v) = λψ(uS − uT ).

Proof. Case 1: Suppose that S∩T = ∅. Let S = {i, j}, T = {k, l}. Then,
for m = i, j,

ψm

(
v + λ(uij − ukl)

)
− ψm(v)

L14
= λψm(uij − ukl).

For m = k, l,

ψm

(
v + λ(uij − ukl)

)
− ψm(v) = ψm

(
v − λ(ukl − uij)

)
− ψm(v)

L14
= −λψm(ukl − uij)

L14
= λψm(uij − ukl).

For player m ∈ N\{i, j, k, l},

ψm

(
v + λ(uij − ukl)

)
− ψm(v)

M
= 0

E,S
= ψm(0)

M
= λψm(uij − ukl).

Case 2: Suppose that S ∩ T ̸= ∅. Let S = {i, j}, T = {j, k}. Choose
l ∈ N\{i, j, k}. For player i,

ψi

(
v + λ(uij − ujk)

)
− ψi(v)

M
= ψi

(
v + λ(uij − ukl)

)
− ψi(v)

L14
= λψi(uij − ukl)

M
= λψi(uij − ujk).

For player k,

ψk(v + λ(uij − ujk))− ψk(v) = ψk

(
v − λ(ujk − uij)

)
− ψk(v)

M
= ψk

(
v − λ(ujk − uil)

)
− ψk(v)

L14
= −λψk(ujk − uil)

L14
= λψk(uil − ujk)

M
= λψk(uij − ujk).
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For player m ∈ N\{i, j, k},

ψm

(
v + λ(uij − ujk)

)
− ψm(v)

M
= 0

E,S
= ψm(0)

M
= λψm(uij − ujk).

E completes the proof. �
Step 3 We endogenously derive the coefficients of Sh and ED.

Lemma 16 For distinct players i, j, k ∈ N ,

ψj(uij − ujk) = 0.

Proof. Without loss of generality, suppose that 1 = i, 2 = j, 3 = k. Choose
players 4, 5. Then,

ψ1(u12 − u23)
M
= ψ1(u12 + u23 − 2u45),

ψ3(u23 − u12)
M
= ψ3(u12 + u23 − 2u45),

ψ1(u12 + u23 − 2u45)
S
= ψ3(u12 + u23 − 2u45).

The above equations imply

ψ1(u12 − u23) = ψ3(u23 − u12). (9)

For player m ∈ N\{1, 2, 3},

ψm(u12 − u23)
M
= ψm(0)

E,S
= 0.

Thus,

ψ2(u12 − u23)
E
= −ψ1(u12 − u23)− ψ3(u12 − u23)

L15
= −ψ1(u12 − u23) + ψ3(u23 − u12)

= 0,

where the last equality holds from equation (9). �
Define

y = ψ3(nu1), (10)

z = ψ3(nu12). (11)

Then,

0
E,S
= ψ3(0)

M

≤ y
M

≤ ψ3(nuN)
E,S
= 1,

0
E,S
= ψ3(0)

M

≤ z
M

≤ ψ3(nuN)
E,S
= 1.
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In addition,

y = ψ3(nu1)
M

≤ ψ3(nu12) = z.

Define x = 1− z. Note that 0 ≤ x ≤ 1, 0 ≤ x+ y ≤ 1. Define a solution Φx,y

by

Φx,y(v) = xSh(v) + yED(v) + (1− x− y)CIS(v) for all v ∈ Γ. (12)

Lemma 17 Let i ∈ N , i ̸= 1. Then,

ψ(u1 − ui) = Φx,y(u1 − ui).

Proof. For player 1,

1
E,S
= ψ1(u

1)

= ψ1

(
nu1 −

∑
j ̸=1

(u1 − uj)
)

L7
= ψ1(nu1)−

∑
j ̸=1

ψ1(u1 − uj)

E,S
=

(
n− (n− 1)y

)
−

∑
j ̸=1

ψ1(u1 − uj)

M
=

(
n− (n− 1)y

)
− (n− 1)ψ1(u1 − ui).

By rearranging,

ψ1(u1 − ui) = 1− y = Φx,y
1 (u1 − ui).

For player j ∈ N\{1, i},

ψj(u1 − ui)
M
= ψj(0)

E,S
= 0 = Φx,y

j (u1 − ui).

E completes the proof. �

Lemma 18 Let S ⊆ N , |S| = 2, S ̸= {1, 2}. Then,

ψ(u12 − uS) = Φx,y(u12 − uS).
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Proof. Case 1: Suppose that 2 /∈ S. From the definition of u2, we have

u2(N) =
n(n− 1)

2
and u2 =

n(n− 1)

2
u12 −

∑
T⊆N :|T |=2,T ̸={1,2}

(u12 − uT ).

With this in mind, for player 2,

1
E,S
= ψ2

( 2

n− 1
u2
)

= ψ2

(
nu12 −

2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

(u12 − uT )
)

L15
= ψ2(nu12)−

2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

ψ2(u12 − uT )

E,S
=

1

2

{
n− (n− 2)z

}
− 2

n− 1

∑
T⊆N :|T |=2,T ̸={1,2}

ψ2(u12 − uT )

L16
=

1

2

{
n− (n− 2)z

}
− 2

n− 1

∑
T⊆N :|T |=2,2/∈T

ψ2(u12 − uT )

M
=

1

2

{
n− (n− 2)z

}
− 2

n− 1
· (n− 1)(n− 2)

2
ψ2(u12 − uS)

=
1

2

{
n− (n− 2)z

}
− (n− 2)ψ2(u12 − uS).

By rearranging

ψ2(u12 − uS) =
1− z

2
=
x

2
= Φx,y

2 (u12 − uS).

For player 1, if 1 /∈ S,

ψ1(u12 − uS)
S
= ψ2(u12 − uS) = Φx,y

2 (u12 − uS)
S
= Φx,y

1 (u12 − uS).

If 1 ∈ S,

ψ1(u12 − uS)
L16
= 0 = Φx,y

1 (u12 − uS).

For m ∈ N\(S ∪ {1, 2}),

ψm(u12 − uS)
M
= ψm(0)

E,S
= 0 = Φx,y

m (u12 − uS).

E and S yield the desired equation.
Case 2: Suppose that 2 ∈ S. We can write S = {2, i} for some i ∈ N\{1, 2}.
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For player 1,

ψ1(u12 − u2i)
M
= ψ1(u12 − u34)

C1
= Φx,y

1 (u12 − u34) = Φx,y
1 (u12 − u2i).

For player 2,

ψ2(u12 − u2i)
L16
= 0 = Φx,y

2 (u12 − u2i).

For m ∈ N\{1, 2, i},

ψm(u12 − u2i)
M
= ψm(0)

E,S
= 0 = Φx,y

m (u12 − u2i).

E completes the proof. �

Step 4 We show that ψ coincides with ED on Γ1.

Lemma 19 Let v ∈ Γ1. Then,

ψi(v) = Φx,y
i (v) =

v(N)

n
for all i ∈ N.

Proof. Since v ∈ Γ1, there exist unique real numbers α, β, γT , T ⊆ N ,
|T | ≥ 3, such that

v = αu1 + βu2 +
∑

T⊆N :|T |≥3

γT ūT .

Let C = {T ⊆ N : |T | ≥ 3, γT ̸= 0}. We proceed by induction.
Induction base: If |C| = 0, then v = γw, so the result holds from E and S.
Induction step: Suppose that the result holds for |C| = t−1, and we prove
the result for |C| = t, where t ≥ 1.
Consider a player j ∈ N\(∩R∈CR). By choosing a coalition R such that
R ∈ C and j /∈ R, we have

ψj(v
′)

M
= ψj(v

′ − γRūR)
IH
=
v(N)

n
.

Consider a player i ∈ ∩R∈CR. Note that the payoff of player j ∈ N\(∩R∈CR)
is already determined. Since the players in ∩R∈CR are substitutes, E and S
uniquely determine the payoffs of all players. �

Step 5 We show that ψ(v) = Φx,y(v) for all v ∈ Γ.

Lemma 20 Let v1 ∈ Γ1, v2 ∈ Γ2. Then, ψ(v1 + v2) = Φx,y(v1 + v2).
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Proof. Since v2 ∈ Γ2, there exist unique real numbers γT , T ⊆ N , |T | = 2,
T ̸= {1, 2}, such that

v2 =
∑

T⊆N :|T |=2,T ̸={1,2}

γT (u12 − uT ).

Since v1(i) = v1(j) for all i, j ∈ N ,5

ψ(v1 + v2)
L15
= ψ(v1) +

∑
T⊆N :|T |=2,T ̸={1,2}

γTψ(u12 − uT )

L19,L18
= Φx,y(v1) +

∑
T⊆N :|T |=2,T ̸={1,2}

γTΦ
x,y(u12 − uT )

= Φx,y(v).

�

We resume the proof of Theorem 1. Let v ∈ Γ. Then, there exist v1 ∈ Γ1,
v2 ∈ Γ2 and v3 ∈ Γ3 such that

v = v1 + v2 + v3.

Since v3 ∈ Γ3, there exist unique real numbers γi, i ∈ N , such that

v3 =
∑
i∈N

γi(u1 − ui).

Then,

ψ(v1 + v2 + v3) = ψ
(
v1 + v2 +

∑
i∈N

γi(u1 − ui)
)

L7
= ψ(v1 + v2) +

∑
i∈N

γiψ(u1 − ui)

L20, L17
= Φx,y(v1 + v2) +

∑
i∈N

γiΦ
x,y(u1 − ui)

= Φx,y(v1 + v2 + v3).

Thus, ψ = Φx,y. Equivalently, it is a convex combination of the egalitarian
Shapley value and the Consensus value, which completes the proof. �

5Note that (u1 + u2)(i) = (u1 + u2)(j) for all i, j ∈ N and ūT (i) = 0 for all T ⊆ N ,
|T | ≥ 3, i ∈ N .
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Appendix B

Based on the proof in Appendix A, we give another proof of Theorem 2. For
each T ⊆ N , T ̸= ∅, we define w̄T by

w̄T (S) =

{
1 if |S ∩ T | = 1,

0 otherwise.

Theorem 11 (Yokote et al. (2014)) The following set

{ui : i ∈ N} ∪ {w̄T : T ⊆ N, |T | ≥ 2}

is a basis of Γ.

From Theorem 11, we can construct the following basis:{
u1
}
∪ {u1 − ui : i ∈ N, i ̸= 1} ∪ {w̄T : |T | ≥ 2}. (13)

Proof of Theorem 2. Choose i ∈ N\{1} and define x = ψ1(u1 − ui).
Here, x does not depend on the choice of i ∈ N\{1}. To see this, let i, j ∈
N\{1}. Then,

ψ1(u1 − ui)
M
= ψ1

(
u1 −

1

2
ui −

1

2
uj

)
M
= ψ1(u1 − uj).

x satisfies

0
E,S
= ψ1(0)

WM

≤ x
WM

≤ ψ1(u
1)

E,S
= 1.

The following equality holds: for any i ∈ N\{1},

ψ(u1 − ui) = ESx(u1 − ui). (14)

Indeed, for player j ∈ N\{1, i},

ψj(u1 − ui)
WM
= ψj(0)

E,S
= 0.

Since ψ1(u1 − ui) = ESx
1 (u1 − ui), E implies ψ(u1 − ui) = ESx(u1 − ui).

Let us go back to Step 1 of proof of Theorem 1. In order to prove Lemma
7, it suffices to assume that n ≥ 3. Since WM is stronger than M, we can
use the lemma:

ψ
(
v+λ(u1−ui)

)
= ψ(v)+λψ(u1−ui) for all v ∈ Γ, i ̸= 1, and λ ∈ R. (15)
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Define

Γ4 = Sp(u1 ∪ {w̄T : T ⊆ N, |T | ≥ 2}).

By following the same line of proof of Lemma 19, we obtain

ψi(v) = ESx
i (v) =

v(N)

n
for all i ∈ N, v ∈ Γ4. (16)

Let v ∈ Γ. Then, from the fact that the set of games in (13) is a basis, there
exist γi ∈ R, i ̸= 1, and v4 ∈ Γ4 such that

v =
∑

i∈N :i̸=1

γi(u1 − ui) + v4.

We conclude that

ψ(v)
(15)
=

∑
i∈N :i̸=1

γiψ(u1 − ui) + ψ(v4)

(14), (16)
=

∑
i∈N :i̸=1

γiES
x(u1 − ui) + ESx(v4)

= ESx(v).

�

Appendix C

We prove Theorems 3, 4 and 5. Note that all the reasonings in the proof of
Theorem 1 remain valid since SM, SSM and WGM are stronger than M.

Proof of Theorem 3. Define y and z as we did in equations (10), (11)
and let x = 1− z. Then,

0
E,S
= ψ3(0)

SM
= ψ3(nu1) = y.

Thus, equation (12) reduces to

Φx,y(v) = xSh(v) + (1− x)CIS(v) for all v ∈ Γ.

�
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Proof of Theorem 4. Define y and z as we did in equations (10), (11)
and let x = 1− z. Then,

0
E,S
= ψ3(0)

SSM
= ψ3(nu1) = y,

z = ψ3(nu12)
SSM
= ψ3(nuN) = 1.

It follows that x = y = 0. Thus, equation (12) reduces to

Φx,y(v) = CIS(v) for all v ∈ Γ.

�

Proof of Theorem 5. Define y and z as we did in equations (10), (11)
and let x = 1− z. Then,

z = ψ3(nu12)
WGM
= ψ3(nuN) = 1.

It follows that x = 0. Thus, equation (12) reduces to

Φx,y(v) = yCIS(v) + (1− y)ED(v) for all v ∈ Γ.

�

Appendix D

We prove Theorem 6. For a game v ∈ Γ, we define the dual game vd by

vd(S) = v(N)− v(N\S) for all S ⊆ N,S ̸= ∅.

Proof of Theorem 6. Define ψd : Γ → Rn by

ψd(v) = ψ(vd).

Then, ψd satisfies E, S and M. From Theorem 1, there exist α, β ∈ [0, 1] such
that

ψd = αESβ + (1− α)CIS.

For any v ∈ Γ,

ψ(v) = ψd(vd)

= αESβ(vd) + (1− α)CIS(vd)

= αESβ(v) + (1− α)ENSC(v),

which complete the proof. �
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