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Abstract

It has been seen that local equilibrium determinacy can be achieved by applying

active monetary policies and passive fiscal policies in discrete time New Keynesian

(NK) models that include a fiscal policy rule with a time lag in the policy response.

It is also indicated, however, that in models with money-in-the-production-function

(MIPF), equilibrium indeterminacy can occur even under these policy actions. In

this paper, we first show that the above-mentioned policy implications can be de-

rived from a continuous time NK model that does not introduce a policy lag. Next,

we introduce monetary and fiscal policy lags into the model and demonstrate that

both or either of these policy lags can resolve the problem of indeterminacy.

JEL Classification: E32; E52

Keywords: continuous time New Keynesian model, policy lag, two-delay differential

equations, determinacy analysis

1 Introduction

Optimizing models that consider the stickiness associated with price and nominal wages

have often been referred to as New Keynesian (NK) models.1 In the simplest NK models,

∗Faculty of Economics, Chiba Keizai University, Chiba, Japan; Tel.: +81-43-253-9745; Fax: +81-43-

254-6600; E-mail: tsuzukie5@gmail.com
†Faculty of Political Science and Economics, Waseda University, Tokyo, Japan
‡Faculty of Economics, Komazawa University, Tokyo, Japan
1Introductory textbooks for NK models are provided by Woodford (2003), Gaĺı (2008), and Walsh

(2010).
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monetary policy is thought to be conducted by financial institutions in accordance with

rules that induce responses in the nominal interest rate based on the inflation rate (interest

rate rules). If the nominal interest rate is changed by more than one unit in response to

each unit of change in the inflation rate, then the policy is referred to as active. Conversely,

if the nominal interest rate’s response is less than one unit it is referred to as passive. To

achieve local equilibrium determinacy, a monetary policy must be active. This proposition

is recognized as the “Taylor principle.”

The interaction between monetary and fiscal policies has been studied by Leeper

(1991), among others. Leeper (1991) evaluated the efficacy of a fiscal policy rule wherein

the lump-sum tax responds to total government liabilities (tax collection rule). An active

fiscal policy manipulates the amount of tax without abiding by budget discipline. Con-

versely, a passive fiscal policy seeks to keep total government liabilities in line with income,

which implies that the fiscal regime is of a Ricardian type. Leeper (1991) demonstrates

that there are two possible combinations of monetary and fiscal policies for local equi-

librium determinacy; i.e., for local equilibrium determinacy, an active monetary policy

must be combined with a passive fiscal policy, whereas a passive monetary policy must be

combined with an active fiscal policy. In the latter case, the treasury budget is balanced

by inflation caused by the passive monetary policy.

Although Leeper (1991) assumes flexible prices, Schmitt-Grohé and Uribe (2007) and

Kumhof, Nunes, and Yakadina (2010) develop Leeper’s model to include price stickiness,

i.e., they expand Leeper’s model to NK models. They perform similar analyses as in

Leeper (1991) by assuming rules that include responses not only of lump-sum taxes but

also of the income tax rate to total government liabilities, where the former represents a

non-distortionary tax and the latter represents a distortionary tax. Their studies basically

confirmed Leeper’s results.

These studies use discrete time models. They also assume that tax rates respond to

a past (one period earlier) value of government liabilities. In other words, they consider

the presence of a policy lag. More generally, a certain policy variable evaluated at period

t responds to an endogenous variable evaluated not at time t, xt, but at time t− 1, xt−1.

Discrete time models have no analytical problem dealing with a time lag. However, how

should a time lag be treated in continuous time models? Would the results concerning

the effects of monetary and fiscal policies hold in continuous time models with policy lag?

The main objective of this study is to answer these questions.

One way of treating the “past” of a variable in continuous time models is to employ
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a weighted average of such a variable’s stream that extends from the infinite past to

the present, as in the study of Benhabib, Schmitt-Grohé, and Uribe (2003). However, a

time lag in the strict sense could not be represented by the variable’s weighted average.

Instead, it should be represented by a past value taken at a certain point in time. If

we introduce a time lag into a continuous time model, then the system will be described

by a delay differential equation (in other words, a differential-difference equation) that

includes terms ẋt, xt, and xt−θ, where θ represents a time lag.

Only a limited amount of research has been conducted on the effects of lag in policy

responses using a continuous time model. Although Tsuzuki (2014, 2015) develops con-

tinuous time NK models that include an interest rate rule with policy lag, these models

do not include a fiscal policy rule. This study develops a continuous time NK model that

includes both monetary and fiscal policy rules. Furthermore, we introduce policy lags

into these rules and perform an analysis of local equilibrium determinacy.

First, we examine whether the above mentioned results shown by Leeper (1991),

Schmitt-Grohé and Uribe (2007), and Kumhof, Nunes, and Yakadina (2010) hold in a

continuous time NK model without a policy lag. Next, we investigate the case with the

existence of two policy lags.

This report is structured as follows. In Section 2, we discuss the behavior of economic

agents in a model economy. Section 3 analyzes the local dynamics for a case where time

lag is absent. Section 4 includes an evaluation of a case where monetary and fiscal policies

that accompany time lags are introduced. Section 5 provides a conclusion.

2 The model

In this section, we propose a simple continuous time NK model that follows Benhabib,

Schmitt-Grohé, and Uribe (2003). The model economy is constructed using monetary

and financial institutions and household–firm units that are indexed by i (we normalize

their total at unity: i.e., i ∈ [0, 1]). Household–firm units i produce and sell goods i

under monopolistic competition. Furthermore, each household–firm unit first aggregates

heterogeneous types of goods and then consumes them as composite goods.

We shall describe monetary and fiscal policy implementations following the practice

of Leeper (1991) and Schmitt-Grohé and Uribe (2007). Monetary institutions manipulate

the nominal interest rate according to fluctuations in the inflation rate; whereas, financial

institutions manipulate the income tax rate according to fluctuations in total government
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liabilities (i.e., money and bonds). Leeper (1991) examines the case of a lump-sum tax,

which is a non-distortionary tax, and Schmitt-Grohé and Uribe (2007) examine the case

of income tax, which is a distortionary tax. This study deals with the latter, emphasizing

the generality of the specification. We also assume that financial institutions spend their

revenue, but their expenditures do not affect either production or utility of household–firm

units.

First, we will describe the demand for heterogeneous products and the aggregation of

such products by household–firm units.

2.1 Simultaneous optimization

Household–firm units aggregate various types of products via the Dixit–Stiglitz function2:

y =

[
∫ 1

0

y
φ−1

φ

i di

]

φ
φ−1

, (1)

where y represents the quantity of composite products, yi denotes the quantity of products

i, and φ (> 1) denotes the elasticity of substitution for the heterogeneous products.3

Given the quantity of composite products, the price of composite products (which

equals the general price level) p, and prices of products i, pi, the demand for product i

is determined through minimizing cost
∫ 1

0
piyidi subject to Equation (1). This presents

a simultaneous optimization problem (static optimization). The first-order condition for

optimization can be obtained as follows4:

yi =

(

pi
p

)−φ

y, (2)

where p =
[

∫ 1

0
p1−φ
i di

]
1

1−φ

. Equation (2) is a demand function for products i.

2.2 Intertemporal optimization

Next, we provide a description for the consumption behavior, price setting, and production

performed by household–firm units. Household–firm units i produce products i using labor

2Refer to Dixit and Stiglitz (1977).
3When products are completely homogenous (complete substitution), φ → 1. In this study, we assume

that products are heterogeneous, wherein φ > 1.
4Refer to Blanchard and Kiyotaki (1987).
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forces i. Assuming a linear technology, we specify the production function as follows:

yi = zℓi, (3)

where z denotes productivity, which is constant and common among all household–firm

units, and ℓi denotes the labor forces used for producing products i.

Household–firm units i obtain utility from consumption and money holdings and disu-

tility from labor supply and price revisions.5 We specify the utility function as follows:

U(ci, mi, ℓi, πi) = u(ci, mi) −
ℓ1+ψi

1 + ψ
− η

2
(πi − π∗)2, (4)

where ci denotes the consumption of composite products, mi denotes real money balances,

πi = ṗi/pi denotes the price change rate of products i (π∗ denotes the steady-state value

of the price change rate), ψ > 0, and η > 0.6 We assume that uc = ∂u/∂ci > 0,

ucc = ∂2u/∂c2i < 0, um = ∂u/∂mi > 0, and umm = ∂2u/∂m2
i < 0. Due to the existence of

the price revision costs, prices become sticky. Hence, η can be interpreted as representing

price stickiness, which increases with increases in η. Furthermore, we formulated price

revision costs as proportional to the divergence from the steady-state value. This is an

assumption for simplicity and does not affect the arguments made in this study.

Assets of household–firm units i comprise money and bonds: Ai = Mi +Bi, where Ai

represents nominal assets, Mi represents the nominal money balance, and Bi represents

nominal bonds. Assets can be increased based on income and bond interest and can be

decreased based on consumption and income taxes. Thus, the following equation holds:

Ȧi = (1− τ )piyi +RBi− pci, where R represents the nominal interest rate for bonds, and

τ represents the income tax rate. We can rewrite this equation in real terms as follows:

ȧi = (1 − τ )
pi
p
yi + rai − ci − Rmi, (5)

where ai = Ai/p denotes the real asset balance, and r = R−π (π = ṗ/p) denotes the real

interest rate.

Household–firm units determine ci, mi, and πi by maximizing the discounted present

value of a stream of utility represented by
∫∞

0
U(ci, mi, ℓi, πi)e

−ρtdt (where ρ > 0 denotes

5The price revision costs can be interpreted as psychological stresses caused by price negotiations.
6Here, the price revision cost is specified in a quadratic equation consistent with that outlined by

Rotemberg (1982).
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the discount rate), subject to the restrictions of Equations (2), (3), (5), and π = ṗ/p.

This creates a problem of intertemporal optimization (dynamic optimization).

For this problem, we set a current value Hamiltonian as follows:

H = u(ci, mi) −
1

1 + ψ

(

1

z

(

pi
p

)−φ

y

)1+ψ

− η

2
(πi − π∗)2

+ µ1

[

(1 − τ )
pi
p

(

pi
p

)−φ

y + rai − ci − Rmi

]

+ µ2πipi,

where µ1 and µ2 are the co-state variables of the state variables ai and pi, respectively.

The first-order conditions for optimization can be obtained as follows:

∂H
∂ci

= uc(ci, mi) − µ1 = 0, (6)

∂H
∂mi

= um(ci, mi) − µ1R = 0, (7)

∂H
∂πi

= −η(πi − π∗) + µ2pi = 0, (8)

µ̇1 = ρµ1 −
∂H
∂ai

= ρµ1 − rµ1, (9)

µ̇2 = ρµ2 −
∂H
∂pi

= ρµ2 −
(yi
z

)ψ φ

z

yi
pi

− µ1(1 − φ)(1 − τ )
yi
p
− µ2πi. (10)

The second-order conditions are given as follows:

ucc < 0; D ≡ uccumm − u2
cm > 0. (11)

Furthermore, economically significant solutions would require satisfying the transversality

conditions expressed as

lim
t→∞

ai(t)e
−ρt = 0,

lim
t→∞

pi(t)e
−ρt = 0.

As all household–firm units’ behavior is based on the same equations (i.e., they are

symmetric), we can drop subscript i from all variables. Further, we can derive the follow-

ing equation from Equations (8) and (10):

π̇ = ρ(π − π∗) − φ

η
z−(1+ψ)y1+ψ +

(φ− 1)(1 − τ )

η
µ1y, (12)
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which is referred to as the NK Phillips Curve (NKPC).

Further, solving Equation (7) for m, we obtain

m = m(c, µ1, R); (13)

mc =
∂m

∂c
= − ucm

umm
; uµ =

∂m

∂µ1
=

R

umm
< 0; mR =

∂m

∂R
=

µ1

umm
< 0.

Substituting this equation into Equation (6) and solving for c, we obtain

c = c(µ1, R); (14)

cµ =
∂c

∂µ1
=
umm − ucmR

D
; cR =

∂c

∂R
= −ucmµ1

D
.

2.3 Monetary policy

Interest rate rule

Monetary institutions manipulate the nominal interest rate according to fluctuations in

the inflation rate as follows:

R = R(π); R′(π) > 0; R(π∗) = R̄, (15)

where R̄ represents a nominal interest rate that corresponds with the target inflation rate.

Here, the target inflation rate shall be its steady-state value. Furthermore, R′(π∗) > 1

shall be an active monetary policy, and R′(π∗) < 1 shall be a passive monetary policy as

per the terminology set forth in Leeper (1991).

Generalized interest rate rule

The generalized interest rate rule, which posits that the nominal interest rate responds

to a weighted stream of inflation rates, can be represented as follows:

R(t) = R(πg(t)); πg(t) ≡
∫ t

−∞

δ(s)π(s)ds, (16)

where δ(s) is a weighting factor for inflation rate stream,
∫ t

−∞
π(s)ds, and is defined as

follows:

δ(s) =

(

n

θ1

)n
(t− s)n−1

(n− 1)!
e
− n

θ1
(t−s)

,
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where n takes positive integer numbers, θ1 > 0, and
∫ t

−∞
δ(s)ds = 1. The mean of this

function is given by θ1 and the variance is given by θ2
1/n.

When n → 1, then δ(s) becomes an exponential function, (1/θ1)e
−(1/θ1)(t−s), which

implies that monetary authorities place the greatest emphasis on the present (see Fig. 1).7

The backward-looking interest rate rule proposed by Benhabib, Schmitt-Grohé, and Uribe

(2003) corresponds to this case, wherein θ1 measures the degree to which the monetary

authority is backward looking. When n ≥ 2, δ(s) becomes a unimodal function that

achieves maximum at s = t− (n − 1)θ1/n, and when n → ∞, it becomes a vertical line

at t− θ1.
8
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Figure 1: Function δ(s)

Interest rate rule with a delay

When delays exist in the interest rate’s response to fluctuations in the inflation rate, the

interest rate rule can be represented as follows:

R(t) = R(π(t− θ1)), (17)

7We assumed θ1 = 2.0 and t = 0.
8The standard interest rate rule in Equation (15) corresponds to the case where n → ∞ and θ1 → 0.
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which corresponds to the case where n → ∞ in the generalized interest rate rule. θ1

represents delays in monetary policy.

2.4 Fiscal policy

The budget constraint equation for the public sector is provided as follows: Ḃ = RB −
Ṁ−τpy+pg, where g represents real government spending and is assumed to be constant.

Rewriting this equation in real terms, we obtain

ȧ = ra −Rm − τy + g. (18)

Tax rate rule

Financial institutions manipulating the income tax rate according to fluctuations in the

total of real government liabilities, a, can be expressed as

τ = τ (a); τ ′(a) > 0; τ (a∗) = τ̄ , (19)

where τ̄ is an income tax rate that corresponds with the target level of total government

liabilities. Here, the target level of total government liabilities shall be its steady-state

value. Substituting Equation (19) into Equation (18) and ignoring the responses of other

endogenous variables to variations in a, the dynamic path of total government liabilities

becomes locally stable if

r∗

y∗
− τ ′(a∗) < 0.

Therefore, following the terminology of Leeper (1991), τ ′(a∗) > r∗/y∗ represents a passive

fiscal policy and τ ′(a∗) < r∗/y∗ represents an active fiscal policy.

Tax rate rule with delay

When delays are present in financial institutions’ responses to fluctuations in total gov-

ernment liabilities, the tax rate rule can be expressed as follows:

τ (t) = τ (a(t− θ2)), (20)

where θ2 represents delays in fiscal policy.
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3 Cases with no policy lags

In this section, we consider local dynamics of a model economy with no policy lags. Using

the equilibrium condition y = c+ g for the goods market, the model economy expressed

in Equations (9), (12)–(15), and (19) can be summarized in the following three variable

differential equation system:

µ̇1 = [ρ− R(π) + π]µ1,

π̇ = ρ(π − π∗) − φ

η
z−(1+ψ)[c(µ1, R(π)) + g]1+ψ + (1 − τ (a))

φ− 1

η
µ1[c(µ1, R(π)) + g],

ȧ = [R(π) − π]a− R(π)m(c(µ1, R(π)), µ1, R(π)) − τ (a)[c(µ1, R(π)) + g] + g.

(21)

The stationary point of System (21) can be expressed as (µ∗
1, π

∗, a∗) that satisfies the

simultaneous equations as follows:

π∗ = R̄− ρ,

µ∗
1[c(µ

∗
1, R̄) + g]−ψ =

φ

(1 − τ̄ )(φ− 1)
z−(1+ψ),

a∗ =
R̄m(c(µ∗

1, R̄), µ∗
1, R̄) + τ̄ (c(µ∗

1, R̄) + g) − g

ρ
.

(22)

The Jacobian matrix for System (21) evaluated at the stationary point is expressed as

follows:

J1 =







0 −(R′ − 1)µ∗1 0

P1 ρ− P2R
′ −τ ′ φ−1

η
µ∗

1y
∗

P3 (R′ − 1)a∗ + P4R
′ r∗ − τ ′y∗







,

where9

P1 = −ψφ
η
z−(1+ψ)[c(µ∗

1, R̄) + g]ψcµ +
(1 − τ̄ )(φ− 1)

η
[c(µ∗

1, R̄) + g],

P2 = ψ
φ

η
z−(1+ψ)[c(µ∗

1, R̄) + g]ψcR,

P3 = −R̄(mccµ +mµ) − τ̄ cµ,

P4 = −[m(c(µ∗
1, R̄), µ∗

1, R̄) + R̄(mccR +mR) + τ̄ cR].

9We used Equation (22) for the derivations of P1 and P2.
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From Equation (14), we can see that the following relationship holds: P2 ≷ 0 ⇐⇒
cR ≷ 0 ⇐⇒ ucm ≶ 0. As shown by Feenstra (1986) and Carlstrom and Fuerst

(2003), money-in-the-utility-function (MIUF) model with a negative correlation between

consumption and real money balances (i.e., ucm < 0) is equivalent to a money-in-the-

production-function (MIPF) model. Therefore, we can consider the case of P2 > 0 as an

equivalent case to an MIPF model.

The characteristic equation for System (21) can be expressed as

∆1(λ) ≡ |λI − J1| = λ3 + v1λ
2 + v2λ+ v3 = 0, (23)

where

v1 = −(ρ− P2R
′) − (r∗ − τ ′y∗),

v2 = P1(R
′ − 1)µ∗1 + (ρ− P2R

′)(r∗ − τ ′y∗) + [(R′ − 1)a∗ + P4R
′]τ ′

φ− 1

η
µ∗

1y
∗,

v3 = −P1(R
′ − 1)µ∗1(r

∗ − τ ′y∗) − P3(R
′ − 1)µ∗1

2τ ′
φ− 1

η
y∗.

Because c and π are both jump variables and a is a non-jump variable, the equilibrium can

only be locally determinate when Equation (23) possesses exactly two roots with positive

real parts.

We investigate the conditions for local determinacy. Recalling that −v3 = detJ1

equals the product of the roots, a necessary condition for determinacy can be provided by

v3 > 0. If v3 > 0, then the signs of the roots therein will be expressed as ++− or −−−.

In addition, if at least one of the conditions for Routh–Hurwitz stability10 (which provides

necessary and sufficient conditions for the real parts of all the roots to be negative: v1 > 0;

v2 > 0; v3 > 0; and v4 ≡ v1v2 − v3 > 0) is not satisfied, then we can identify the pattern

of the signs as ++−. In this case, the equilibrium is locally determinate.

We now focus on R′ and τ ′, which indicate the responsiveness of monetary and fiscal

policies, respectively. Define the sets V1–V4 as

V1 = {(R′, τ ′) : v1 < 0},
V2 = {(R′, τ ′) : v2 < 0},
V3 = {(R′, τ ′) : v3 > 0},
V4 = {(R′, τ ′) : v4 < 0}.

10For example, refer to Chapter 18 in Gandolfo (2010).
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Then, we can characterize the set (R′, τ ′) that achieves local determinacy as follows:

Determinacy = {V1 ∪ V2 ∪ V4} ∩ V3.

Numerical simulation

We now provide a numerical simulation. We specify the utility function as follows:

u(c,m) =
(cm)1−σ − 1

1 − σ
; σ > 0.

Furthermore, each parameter is set as follows in conjunction with those outlined in Ben-

habib, Schmitt-Grohé, and Uribe (2003) (quarterly data): φ = 21; ψ = 1; σ = 2; η = 350;

ρ = 0.005; and R̄ = 0.015. When σ > 1, CR < 0 (hence, P2 > 0) holds. Parameter σ

represents the inverse of the elasticity of substitution for intertemporal consumption and

is generally assumed to be greater than unity. Therefore, in the above numerical example,

our model becomes equivalent to an MIPF model.

The steady-state value of the income tax rate shall be set to equal its average level of

0.2. In addition, g is set at 0.073 for the share of government expenditure in the national

income, g/y∗, to match its realistic value of 0.19. Finally, the constant productivity z is

set at unity. On these assumptions, we obtain the sets V1–V4 described on the R′-τ ′ plane

as shown in Fig. 2.

The results implied by Fig. 2 are partly consistent with those of Kumhof, Nunes, and

Yakadina (2010); i.e., a local equilibrium determinacy could be realized using a passive

monetary policy (R′ < 1) accompanied by an active fiscal policy (τ ′ < r∗/y∗)11. However,

unlike in Kumhof, Nunes, and Yakadina’s (2010) model, local determinacy cannot be

achieved when monetary policy is active (R′ > 1) and fiscal policy is passive (τ ′ > r∗/y∗).

In this case, the signs of the real parts of all roots are negative. Thus, indeterminacy

occurs.

Kumhof, Nunes, and Yakadina (2010) introduce money via a cash-in-advance con-

straint. This assumption creates a similar situation to an MIUF model that corresponds

to the case of P2 < 0 in our model. If we assume σ < 1 in the utility function, then P2 < 0

holds. For example, assuming σ = 0.9 and describing the sets V1–V4 on the R′-τ ′ plane,

11In the case of distortionary taxes as the income tax, the dynamic system becomes indecomposable;

i.e., the law of motion of a is affected by the other endogenous variables µ1 and π. Hence, the bifurcation

value of τ ′ (0.019) found in Fig. 2 slightly exceeds the value of r∗/y∗ = 0.013.
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Figure 2: Case in which σ = 2
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we obtain Fig. 3. This figure demonstrates that our result becomes completely consistent

with that by Kumhof, Nunes, and Yakadina (2010).

Figure 3: Case in which σ = 0.9

Furthermore, as suggested by the studies of Benhabib, Schmitt-Grohé, and Uribe

(2003) and Carlstrom and Fuerst (2003), equilibrium indeterminacy can occur even under

an active monetary policy in an MIPF model, regardless of whether it is a continuous

time model or a discrete time model. Although the main contribution of the study of

Benhabib, Schmitt-Grohé, and Uribe (2003) is the finding that a Hopf bifurcation occurs

(which indicates the presence of global indeterminacy) in a continuous time NK model,
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we emphasize here the aspect that an active monetary policy and local indeterminacy

are not mutually exclusive. This suggests that the case of Fig. 2 is considered as the

correspondence of the models examined by Benhabib, Schmitt-Grohé, and Uribe (2003)

and Carlstrom and Fuerst (2003).

Thus, we can state that the results derived from a discrete time model are consistent

with those derived from a continuous time model without a policy lag. In the next section,

we introduce monetary and fiscal policy lags into the model and reconsider the local equi-

librium determinacy. Specifically, we show that monetary and financial authorities can

avoid equilibrium indeterminacy by utilizing policy “delays.” Therefore, in the following

discussion, we restrict the analysis to the case where −v3 = detJ1 < 0.

4 Cases with policy lags

The model economy system when Equations (17) and (20) are used as the interest rate

rule and the tax rate rule, respectively, is expressed as follows:

µ̇1(t) = [ρ− R(π(t− θ1)) + π(t)]µ1(t),

π̇(t) = ρ(π(t) − π∗) − φ

η
z−(1+ψ)[c(µ1(t), R(π(t− θ1))) + g]1+ψ

+ (1 − τ (a(t− θ2)))
φ− 1

η
µ1(t)[c(µ1(t), R(π(t− θ1))) + g],

ȧ(t) = [R(π(t− θ1)) − π(t)]a(t) − R(π(t− θ1))m(c(µ1(t), R(π(t− θ1))), µ1(t), R(π(t− θ1)))

− τ (a(t− θ2))[c(µ1(t), R(π(t− θ1))) + g] + g.

(24)

This is a two-delay differential equation system.

The steady-state values of System (24) are expressed as shown in Equation (22). By

linearizing System (24) around the stationary point, the equations become as follows:

˙̂µ1(t) = −[R′π̂(t− θ1) − π̂(t)]µ∗
1,

˙̂π(t) = ρπ̂(t) − P2R
′π̂(t− θ1) + P1µ̂1(t) − τ ′

φ− 1

η
µ∗

1[c(µ
∗
1, R̄) + g]â(t− θ2),

˙̂a(t) = P3µ̂1(t) − a∗π̂(t) + (P4 + a∗)π̂(t− θ1) + r∗â(t) − τ ′[c(µ∗
1, R̄) + g]â(t− θ2),

(25)

where µ̂1(t) ≡ µ1(t)−µ∗
1, π̂(t) ≡ π(t)−π∗, and â(t) ≡ a(t)−a∗. Assuming the exponential

functions µ̂1(t) = C1e
λt, π̂(t) = C2e

λt, and â(t) = C3e
λt (where C1, C2, and C3 are
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arbitrary constants, and λ is an eigenvalue) as the solutions to this system and plugging

these functions into System (25), we can obtain the following:







λ −µ∗
1 +R′µ∗

1e
−θ1λ 0

−P1 λ− ρ + P2R
′e−θ1λ τ ′ φ−1

η
µ∗

1y
∗e−θ2λ

−P3 a∗ − (P4 + a∗)R′e−θ1λ λ− r∗ + τ ′y∗e−θ2λ













µ̂1(t)

π̂(t)

â(t)






=







0

0

0






.

The determinant of the matrix on the left side, which we denote as ∆2(λ), must be

zero for non-trivial solutions to exist in the above system: i.e.,

∆2(λ) ≡ s0(λ) + s1(λ)e−θ1λ + s2(λ)e−θ2λ + s3(λ)e−(θ1+θ2)λ = 0, (26)

where

s0(λ) = λ3 − (ρ+ r∗)λ2 + (ρr∗ − P1µ
∗
1)λ + P1µ

∗
1r

∗,

s1(λ) = P2R
′λ2 − P2R

′r∗λ + P1R
′µ∗

1λ− P1R
′µ∗

1r
∗,

s2(λ) = τ ′y∗λ2 − ρτ ′y∗λ− a∗τ ′
φ− 1

η
µ∗

1y
∗λ + P3µ

∗
1
2τ ′
φ− 1

η
y∗ − P1µ

∗
1τ

′y∗,

s3(λ) = P2R
′τ ′y∗λ + (P4 + a∗)R′τ ′

φ− 1

η
µ∗

1y
∗λ− P3R

′µ∗
1
2τ ′
φ− 1

η
y∗ + P1R

′µ∗
1τ

′y∗.

Equation (26) is a characteristic equation for System (25).

It is well-known that Equation (26) possesses an infinite number of roots due to the

existence of terms that include the exponential functions e−θ1λ, e−θ2λ, and e−(θ1+θ2)λ.12

In addition, unlike ordinary differential equations, delay differential equations require the

initial conditions for the endogenous variables that are evaluated not only in time t = t0

(time zero) but also in time t0 − θ1 ≤ t ≤ t0 or t0 − θ2 ≤ t ≤ t0. As µ1(t) and π(t) are the

jump variables, their initial values should be determined by economic agents. However,

the values they can determine in time t0 are only µ1(t0) and π(t0). This is because it

is impossible to go back and set the past values. Therefore, if there are exactly two

roots that possess positive real parts among the infinite number of roots, then the initial

conditions are uniquely determined; i.e., the equilibrium is locally determinate. However,

the equilibrium will be indeterminate if there are less than two roots with positive real

parts, and the equilibrium will become unstable if there are more than two roots with

positive real parts (an equilibrium will not be present).

12Refer to Chapter 3 in Bellman and Cooke (1963).
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A numerical method has been developed by Lin and Wang (2012) that can be used to

investigate an equation that includes exponential functions, as in Equation (26).13 The

analysis performed hereafter adheres to Lin and Wang (2012).

4.1 Preconditions

First, to apply the Lin and Wang’s (2012) method, some preconditions should be checked.

According to their study, Equation (26) should satisfy the following conditions:

(i) deg(s0(λ)) ≥ max{deg(s1(λ)),deg(s2(λ)),deg(s3(λ))};

(ii) ∆2(0) 6= 0;

(iii) A solution common to all four polynomials s0(λ) = 0, s1(λ) = 0, s2(λ) = 0, and

s3(λ) = 0 does not exist (i.e., these are coprime);

(iv) limλ→∞(|s1(λ)/s0(λ)| + |s2(λ)/s0(λ)| + |s3(λ)/s0(λ)|) < 1.

Condition (i) is satisfied by 3 > max{2, 2, 1}. Condition (ii) is also satisfied by ∆2(0) =

P1µ
∗
1(r

∗ − τ ′y∗)(1 − R′) + P3µ
∗
1
2τ ′ φ−1

η
y∗(1 − R′) = v3 = −detJ1 6= 0. Condition (iii) is

numerically confirmed as follows: Solving equation s0(λ) = 0 for λ, we obtain λ =

−0.103, 0.005, 0.108. These values cannot be the roots of equation s3(λ) = 0 for {(R′, τ ′) :

R′ ∈ (0, 3), τ ′ ∈ (0, 0.1)}. Therefore, Condition (iii) is satisfied. Finally, Condition (iv) is

satisfied by limλ→∞(|s1(λ)/s0(λ)| + |s2(λ)/s0(λ)| + |s3(λ)/s0(λ)|) = 0.

Now, we examine the effects of lags (θ1, θ2) on local equilibrium determinacy. The

procedure for the analysis is as follows:

(1) The points where pure imaginary roots appear, i.e., the points where dynamics can

change, are characterized (if they are present).14 These points are referred to as the

crossing points.

(2) We describe the sets of the crossing points (called the crossing curves) on the

(θ1, θ2) ∈ R
2
+ plane using numerical simulation.

(3) We indicate the existence of regions where local determinacy is achieved.

13The merit of Lin and Wang’s (2012) method is that it is applicable to the case where an equation

includes not only the exponential functions as e−θ1λ and e−θ2λ but also the function as e−(θ1+θ2)λ. If

s3(λ) = 0, then we can use a different method developed by Gu, Niculescu, and Chen (2005).
14It is ensured from Condition (ii) that a zero real root cannot appear.
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4.2 Crossing curves

We denote a pure imaginary root as λ = iω (where ω = imaginary part15 > 0, and

i =
√
−1). Plugging this expression into Equation (26), we obtain the following:

∆2(iω) = s0(iω) + s1(iω)e−iωθ1 + s2(iω)e−iωθ2 + s3(iω)e−iω(θ1+θ2) = 0. (27)

We first characterize the values of ω that satisfy Equation (27). According to Lemma

3.2 in Lin and Wang (2012), ∆2(iω) = 0 holds for ω ∈ R+ that satisfy the following:

F (ω) ≡ (|s0|2 + |s1|2 − |s2|2 − |s3|2)2 − 4(M2
1 +N2

1 ) < 0,

where

M1(ω) = Re(s2s̄3) − Re(s0s̄1),

N1(ω) = Im(s2s̄3) − Im(s0s̄1).

We denote the set of ω > 0 that satisfies condition F (ω) < 0 as Ω (crossing set). For

ω ∈ Ω, the sets (θ1, θ2) satisfying Equation (27) (crossing points) can be expressed as

follows (Equation 17 in Lin and Wang 2012):

Θ± ≡ {(θ±1 (ω), θ∓2 (ω)) ∈ R
2
+}

=

{(±δ1(ω) − ϕ1(ω) + 2n1π

ω
,
∓δ2(ω) − ϕ2(ω) + 2n2π

ω

)

; n1, n2 ∈ Z

}

,
(28)

15We can assume that ω > 0 without losing generality because the pure imaginary roots will always be

conjugated.
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where

δ1(ω) = cos−1

(

|s0|2 + |s1|2 − |s2|2 − |s3|2

2
√

M2
1 +N2

1

)

; δ1 ∈ [0, π],

ϕ1(ω) = arg{s2s̄3 − s0s̄1}

= tan−1

(

Im(s2s̄3 − s0s̄1)

Re(s2s̄3 − s0s̄1)

)

,

δ2(ω) = cos−1

(

|s0|2 − |s1|2 + |s2|2 − |s3|2

2
√

M2
2 +N2

2

)

; δ2 ∈ [0, π],

M2(ω) = Re(s1s̄3) −Re(s0s̄2),

N2(ω) = Im(s1s̄3) − Im(s0s̄2),

ϕ2(ω) = arg{s1s̄3 − s0s̄2}

= tan−1

(

Im(s1s̄3 − s0s̄2)

Re(s1s̄3 − s0s̄2)

)

.

Lin and Wang (2012) also demonstrate that Θ+ and Θ− form a class of continuous curves

on R
2
+. We call these curves crossing curves. In the next section, we illustrate an example

of crossing curves using a numerical simulation.

4.3 Numerical simulation

We assume the same parameter values and functional form of the utility function as in

the previous section. Furthermore, we suppose that monetary authorities implement an

active policy (R′ = 1.5) and fiscal authorities implement a passive policy (τ ′ = 0.09).

Then, if monetary and fiscal policy lags are not present (i.e., θ1 = θ2 = 0), indeterminacy

occurs, wherein the signs of the roots are −−−.

The crossing set Ω is given by ω ∈ (0.126, 0.460) (Fig. 4). For ω ∈ Ω, we can describe

Θ+ and Θ− as shown in Fig. 5. The solid curves represent Θ+, and the dashed curves

represent Θ−.

We call the direction of the curve corresponding to increasing ω as the positive direc-

tion. When we move in the positive direction along curves Θ+ (Θ−), the region on the

left of Θ+ (Θ−) has two more (less) roots with positive real parts (Theorem 4.1 in Lin

and Wang 2012). Considering this, we use arrows to indicate the crossing directions to

which roots with positive real parts increase when lags (θ1, θ2) intersect with these curves

(Fig. 5). The region on the end of an arrow has two more roots with positive real parts.
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In the three regions indicated by D1, D2, and D3 in Fig. 5, exactly two roots with

positive real parts exist: therefore, the equilibrium is locally determinate. Accordingly,

we can make the following proposition:

Proposition 4.1 Monetary and fiscal authorities can establish local equilibrium deter-

minacy by introducing lags into policy responses when the equilibrium is indeterminate

and where the signs of the roots are −−− under policies without lags.

This proposition indicates that “desirable lags” of monetary and fiscal policies exist.

If lags are too short, then equilibrium indeterminacy will occur, and if they are too long,

the equilibrium will become unstable.

Furthermore, under any configuration of crossing curves, as the number of roots that

possess positive real parts changes by two at a time when θ1 or/and θ2 intersect a crossing

curve, it is impossible for monetary and fiscal authorities to achieve local determinacy by

policy lags if the signs of the roots are +−− under policies without a lag.

5 Conclusion

In this report, we considered how policy lags can affect local equilibrium determinacy by

developing a continuous time NK model that introduces time lags in monetary and fiscal

policy responses. We demonstrated that not only the combination of monetary and fiscal

policies’ activeness but also the timings of their implementation play an important role

in achieving local determinacy.

On the assumption of a plausible parameter set, indeterminacy can arise under the

combination of active monetary policy and passive fiscal policy if no delays occur in policy

implementation by monetary and fiscal authorities. However, such indeterminacy can be

resolved by setting lags in the desirable regions, as indicated by D1–D3 in Fig. 5.

According to Friedman (1948), there are three types of general policy lags, i.e., recog-

nition, implementation, and diffusion lag. Unlike recognition lag and diffusion lag, it

may be possible to purposefully adjust the amount of implementation lag to a certain

degree. Thus, the research in this paper suggests that adjusting the timing of policy

implementation may be used as a method for a policy aimed at stabilization.
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