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Abstract

We introduce several bases of the set of TU games. Given a coali-
tion T , Yokote et al. (2013) introduced the commander game in which
a coalition including 1 player in T obtains payoff. On the other hand,
Shapley (1953) introduced the unanimity game in which a coalition
including all players in T obtains payoff. We consider the intermedi-
ate between the two games. We introduce a game in which a coalition
including k players in T obtains payoff, where 1 ≤ k ≤ |T |. We show
that, if there is a specific relationship between the size of coalition T
and k, we can construct a new basis. By using the new basis, we give
sufficient conditions under which the Shapley value coincides with the
prenucleolus.

JEL classification: C71
Keywords: basis; Shapley value; prenucleolus; coincidence condition

1 Introduction

This paper is a complement study to Yokote et al. (2013). Yokote et al.
(2013) introduced a new basis that has two desirable properties. First, when
we express a game by a linear combination of the basis, the coefficients related
to singletons coincide with the Shapley value. Second, the basis induces the
null space of the Shapley value. The basis consists of the commander game
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defined as follows: the commander game defined for T assigns 1 to a coalition
including 1 player in T . On the other hand, the well-known unanimity game
(Shapley (1953)) is defined as follows: the unanimity game defined for T
assigns 1 to a coalition including all players in T . The above games represent
two extreme cases: a coalition includes only 1 player, or all players. In this
paper, we consider the intermediate between the two cases and introduce
new bases.

We introduce the following game: the game defined for coalition T assigns
1 to a coalition including k players in T , where 1 ≤ k ≤ |T |. We show that,
if there is a specific relationship between the size of coalition T and k, then
we can construct a basis. This result includes the bases of the commander
games and the unanimity games as special cases.

We focus on the basis that consists of the games with the following prop-
erty: the game defined for coalition T with even number of players assigns
1 to a coalition including half players in T . By using this basis, we give suf-
ficient conditions under which the Shapley value coincides with the prenu-
cleolus. We show that the games defined for coalitions with even number
of players span the set of all games satisfying PS property, introduced by
Kar et al. (2009). As they proved, under PS property, the Shapley value
and the prenucleolus coincide. We also give new sufficient condition of the
coincidence. The results enable us to construct a linear subspace where the
coincidence holds. For other approaches to the subspace, see Chang and
Tseng (2011).

This paper is organized as follows. In Section 2, we introduce notations
and definitions. In Section 3, we prove that the set of new simple games
constitutes the basis. In Section 4, we give sufficient conditions under which
the Shapley value coincides with the prenucleolus by using the new basis.

2 Preliminary

A TU game is a pair of (N, v), where N is a finite set of n players and v is
a function from 2N to R and satisfies v(∅) = 0. The value v(S), S ∈ 2N ,
represents the attainable payoff for players in S when they cooperate. In the
remaining part, we fix player set N . So, for simplicity, we write v instead
of (N, v). Let Γ denote the set of all games with player set N . For any two
games v, w ∈ Γ and α ∈ R, we define the sum and the scalar multiplication
as follows: (v + w)(S) = v(S) + w(S) for all S ∈ 2N , and (αv)(S) = αv(S)
for all S ∈ 2N . Then, we can identify the set Γ as 2n − 1 dimensional vector
space. For a set of games {vk}mk=1, m ∈ N, vk ∈ ΓN for all k = 1, · · · ,m, we
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define the set spanned by the games as follows:

Sp({vk}mk=1}) =
{ m∑

k=1

αkvk : αk ∈ R for all k = 1, · · · ,m
}
.

We consider a desirable rule that distributes the total attainable payoff
v(N). Such a rule is described as a solution function. A solution function ψ
assigns an n-dimensional payoff vector to each game v ∈ Γ. In the remaining
part, we focus on the following two solution functions: the Shapley value
and the prenucleolus. For a player i ∈ N , a game v ∈ Γ and a coalition
S ⊆ N , i /∈ S, we define the marginal contribution of player i to coalition S
as follows:

∆iv(S) = v(S ∪ {i})− v(S).

The Shapley value, introduced by Shapley (1953), is defined as follows: for
any v ∈ ΓN ,

ϕi(v) =
∑

S⊆N :i/∈S

|S|!(n− |S| − 1)!

n!

(
v(S)− v(S\{i})

)
for all i ∈ N.

For any v ∈ Γ, S ⊆ N , S ̸= ∅, and x ∈ Rn, we define the excess of coalition S
with respect to x in v as follows: e(S, x, v) = v(S)−

∑
i∈S xi. For any x and

y ∈ Rn, y ≥lex x means that y is greater than x in the lexicographic ordering
of Rn. Let θ(x) = (θ1(x), θ2(x), . . . , θ2n−1(x)) ∈ R2n−1 denote the sequence
of excess of S ⊆ N , S ̸= ∅, with respect to x, where θt(x) ≥ θt+1(x) for all
t, 1 ≤ t ≤ 2n − 2. The prenucleolus ν, introduced by Schmeidler (1969),is
defined as follows: for any v ∈ ΓN ,

ν(v) = {x ∈ I(v) : θ(y) ≥lex θ(x) for all y ∈ I(v)},

where

I(v) =
{
x ∈ Rn :

∑
i∈N

xi = v(N) for all i ∈ N
}
.

For a game v ∈ Γ and β ∈ Rn, we define v+β by (v+β)(S) = v(S)+
∑

i∈S βi
for all S ⊆ N , S ̸= ∅. We say that a game v is strategically equivalent to w if
there exists a vector β ∈ Rn such that w = v+β. For a game v ∈ ΓN , player
i ∈ N is called a null player if v(S ∪ {i}) − v(S) = 0 for all S ⊆ N , i /∈ S.
For a game v ∈ Γ and a permutation π of N , we define πv by πv(S) = v(πS)
for all S ⊆ N , S ̸= ∅. We give axioms satisfied by a solution function ψ.

Weak Strategic Invariance For any v ∈ ΓN and β ∈ Rn, we have ψ(v +
β) = ψ(v) + β.
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Efficiency For any v ∈ ΓN ,
∑

i∈N ψi(v) = v(N).

Null Player Property Let v ∈ ΓN . If i ∈ N is a null player, then ψi(v) =
0.

Symmetry Let v ∈ Γ be a game and π be a permutation of N such that
v = πv. Then, ψ(v) = πψ(v).

Both the Shapley value and the prenucleolus satisfy all axioms above.

3 Extension of basis

In Yokote et al. (2013), we introduced the commander game ūT for each
coalition T ∈ 2N\∅. The game ūT is defined as follows: ūT (S) = 1 if |S∩T | =
1 and 0 otherwise. On the other hand, the well-known unanimity game uT ,
introduced by Shapley (1953), is defined as follows: uT (S) = 1 if |S∩T | = |T |
and 0 otherwise. The two games capture two extreme cases. In the game
ūT , only one player in T yields payoff, while in the game uT , cooperation of
all players in T yields payoff. We consider the intermediate between the two
extreme cases.

Let T ⊆ N , k ∈ N, 1 ≤ k ≤ |T |. We define ūkT by

ūkT (S) =

{
1 if |S ∩ T | = k,

0 otherwise.

Note that ū1T = ūT and ū
|T |
T = uT .

Shapley (1953) and Yokote et al. (2013) respectively proved that the set
{uT}T∈2N\∅ and {ūT}T∈2N\∅ are bases of Γ. In this section, we show that we
can also construct a basis by using the game ūkT . In order to do that, we
need a specific relationship between the size of coalition T and the number
of intersection k. Let us introduce a function that is used to describe the
relationship. Consider a function l : {1, · · · , n} → {1, · · · , n} satisfying the
following conditions:

C1: l(1) = 1.

C2: l(t) = l(t− 1) or l(t− 1) + 1 or l(t− 1)− 1 for all t = 2, · · · , n.

We have the following result:

Theorem 1 Let l be a function which satisfies C1 and C2. Then, the set of
games {ūl(|T |)

T }∅≠T⊆N is a basis of Γ.
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Theorem 1 generalizes the result by Shapley (1953) and Yokote et al. (2013)

in that both sets {uT}T∈2N\∅ and {ūT}T∈2N\∅ can be expressed by {ūl(|T |)
T }∅≠T⊆N

with a function l satisfying C1 and C2. Before giving a precise proof, we ex-
plain the outline. The proof highly relies on the following lemma saying that
the game ūkT can be expressed by the addition of games with the superscript
k − 1:

Lemma 1 Let T ⊆ N , |T | ≥ 2, k ∈ N, 2 ≤ k ≤ |T |. Then, we have

ūkT =
1

k

(∑
i∈T ū

(k−1)
T\{i} − (|T | − k + 1)ū

(k−1)
T

)
.

For the proof of this lemma, see Appendix. The proof of Theorem 1 proceeds
by induction. First, it is already proved that the set {ū1T}T∈2N\∅ is a basis.
Given this inductive base, we increase the sum of the number of superscripts.
The inductive step is completed by using Lemma 1.

Proof of Theorem 1. We introduce three notations with respect to the func-
tion l.

K(l) =
n∑

k=1

l(k),

M(l) = max{l(k) : k = 1, · · · , n},
Q(l) = {k : l(k) =M(l)}.

If K(l) = n, then l(k) = 1 for all k = 1, · · · , n, the proof is completed by
the result of Yokote (2013). We establish the inductive step. Suppose that
the result holds for all l such that l satisfies C1, C2, and n ≤ K(l) ≤ p. We

prove the result for K(l) = p+ 1, where n ≤ p ≤ n(n+1)
2

− 1.

Assume, by way of contradiction, that the set of games ū
l(|T |)
T , K(l) =

p+ 1, is not a basis. Then, there exists (λT )∅≠T⊆N ̸= 0 such that∑
T⊆N :T ̸=∅

λT ū
l(|T |)
T = 0. (1)

Let q ≥ 2 denote the natural number such that l(q) = M(l) and q ≤ k for
all k ∈ Q(l). Then, the following equation holds:

l(q − 1) = l(q)− 1 ≥ 1.

From equation (1), we have∑
T⊆N :T ̸=∅,|T |≠q

λT ū
l(|T |)
T +

∑
S⊆N :|S|=q

λSū
l(q)
S = 0.
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By applying Lemma 1, we have∑
T⊆N :T ̸=∅,|T |≠q

λT ū
l(|T |)
T

+
∑

S⊆N :|S|=q

λS
l(q)

(∑
i∈S ū

(l(q)−1)
S\{i} − (q − l(q) + 1)ū

(l(q)−1)
S

)
= 0. (2)

We define l′ by

l′(|T |) =

{
l(|T |) if |T | ̸= q,

l(q)− 1 if |T | = q.

We show that l′ satisfies C1 and C2. Since q ≥ 2, l′(1) = l(1) = 1, which
proves C1. Since l(q) =M(l), we have

l(q + 1) = l(q) or l(q)− 1.

If l(q + 1) = l(q), then l′(q + 1) = l(q + 1) = l′(q) + 1. If l(q + 1) = l(q)− 1,
then l′(q + 1) = l(q + 1) = l′(q). Namely, l′(q + 1) = l′(q) + 1 or l′(q). In
addition, l′(q) =M(l)− 1 = l(q − 1) = l′(q − 1), which proves C2.

By using the function l′, equation (2) can be written as follows:∑
T⊆N :T ̸=∅,|T |≠q

λT ū
l′(|T |)
T

+
∑

S⊆N :S ̸=∅,|S|=q

λS
l(q)

(∑
i∈S ū

l′(|S\{i}|)
S\{i} − (q − l′(q))ū

l′(q)
S

)
= 0. (3)

Since K(l′) ≤ p, equation (3) contradicts the induction hypothesis. �

As Yokote et al. (2013) proved, the set {ū1T}∅̸=T⊆N has two desirable prop-
erties. First, when we express a game v by a linear combination of the basis,
the coefficients related to singletons coincide with the Shapley value. Second,
the set of games defined for coalitions with no less than 2-players spans the
null space of the Shapley value. In order that the new basis {ūl(|T |)

T }T∈2N\N
has the same property, we need additional conditions on the function l. The
important fact here is that, in order to induce the null space of the Shapley
value, the worth of the grand coalition in the game ū

l(|T |)
T , T ⊆ N , |T | ≥ 2,

must be equal to 0. In other words, we must have l(|T |) < |T | for T ⊆ N ,
|T | ≥ 2. So, we consider a function l : {1, · · · , n} → {1, · · · , n} which
satisfies the following conditions:

C1’: l(1) = l(2) = 1,
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C2’: l(t) = l(t− 1) or l(t− 1) + 1 or l(t− 1)− 1 for all t = 3, · · · , n.

Theorem 2 Let l be a function which satisfies C1′ and C2′. Then,

1: The set of games {ūl(|T |)
T }∅̸=T⊆N is a basis of Γ.

2: When we express a game v ∈ Γ by a linear combination of this basis,
the coefficient of ū1{i} is equal to ϕi(v) for all i ∈ N .

3: The set {ūl(|T |)
T : T ⊆ N, |T | ≥ 2} spans the null space of ϕ.

Proof. The set is a basis from Theorem 1. Let T ⊆ N , |T | ≥ 2, and
j ∈ N\T . Then, for any S ⊆ N\{j}, we have |S ∩ T | = |(S ∪ {j}) ∩ T |. It

follows that j is a null player, and we obtain ϕj(ū
l(|T |)
T ) = 0. From symmetry

and the fact that ū
l(|T |)
T (N) = 0, we have ϕi(ū

l(|T |)
T ) = 0 for all i ∈ N . As a

result, 3 holds. It remains to prove 2. Let v ∈ Γ be given. Let (αT )T∈2N\∅

denote the coefficients in the linear combination representing v by ū
l(|T |)
T .

Then, for any i ∈ N ,

ϕi(v) = ϕi

( ∑
T∈2N\∅

αT ū
l(|T |)
T

)
=

∑
T∈2N\∅

αTϕi(ū
f(|T |)
T )

=
∑
j∈N

α{j}ϕi(ū
1
{j})

= α{i},

where the fourth equality holds from ϕi(ū
1
{i}) = 1 and ϕi(ū

1
{j}) = 0 for all

j ∈ N\{i}.1 �

4 Basis and coincidence condition

The purpose of this section is to give sufficient conditions under which the
Shapley value coincides with the prenucleolus by using the basis introduced
in Section 3.

Let us consider the following function f : 2N → N:

f(T ) =


1 if |T | = 1,
|T |+1

2
if |T | is an odd number, |T | ≥ 2,

|T |
2

if |T | is an even number, |T | ≥ 2.

1These equations immediately follow from null player property and efficiency.
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For a coalition T with even number of players, the game ū
f(T )
T captures the

situation in which a coalition including half players in T obtains payoff. From
Theorem 1, the set of games {ūf(T )

T }∅≠S⊆N is a basis. Thus, any game v ∈ Γ
can be represented by a linear combination of the basis. Let q(T, v) denote
the coefficients in the linear combination, that is,

v =
∑

T∈2N\∅

q(T, v)ū
f(T )
T .

For any v ∈ Γ, we define vSh by

vSh = v −
∑
i∈N

q({i}, v)ū1{i}.

Note that, from Theorem 2,

ϕ(vSh) = ϕ(v)−
∑
i∈N

q({i}, v)ϕ(ū1{i})

= ϕ(v)−
∑
i∈N

ϕi(v)ϕ(ū
1
{i}) = 0.

The game vSh is called the excess game with respect to the Shapley value.
For any v ∈ Γ, we define

Q(v) = {T ∈ 2N\∅ : q(T, v) ̸= 0, |T | ≥ 2}.

We have the following result:

Theorem 3 Let v ∈ Γ. Then, ϕ(v) = ν(v) if at least one of the following
conditions holds:

Condition 1: T, T ′ ∈ 2N\∅ and |T | = |T ′| ≥ 2 imply q(T, v) = q(T ′, v).

Condition 2: T ∈ Q(v) implies |T | is an even number.

Condition 3: T, T ′ ∈ Q(v) and T ̸= T ′ imply |T | = |T ′| and T ∩ T ′ = ∅.

We divide the remaining part into three subsections and prove each condition
of Theorem 3. It will be proved that Condition 1 is equivalent to saying that
that game v is strategically equivalent to a symmetric game, and Condition
2 is equivalent to PS property introduced by Kar et al. (2009). Condition 3
is a new condition in this paper.

8



4.1 Proof of Condition 1

We prove that v is strategically equivalent to a symmetric game if and only
if v satisfies Condition 1. We say that a game v ∈ Γ is symmetric if

|S| = |T | implies v(S) = v(T ) for all S, T ⊆ N.

From Symmetry, the coincidence between ϕ and ν immediately follows in
symmetric games.

Proposition 1 Let v ∈ Γ. Then, v is strategically equivalent to a symmetric
game if and only if v satisfies Condition 1.

Proof. Let k ∈ N, 1 ≤ k ≤ n. We define the game ūk by

ūk =
∑

T⊆N :|T |=k

ū
f(T )
T .

Let k̄ = f(T ), where T is a coalition such that |T | = k. In this game, we
have

ūk(S) =


(
|S|
k̄

)
·

(
|N\S|
k − k̄

)
if |S| ≥ k̄,

0 if 1 ≤ |S| < k̄.

It follows that ūk is a symmetric game. The set of symmetric games is a
linear subspace of R2n−1, and the dimension is equal to n. Since the set of
games {ūk}nk=1 is linearly independent, the set spans the space. As a result,
we obtain the following statement:

A game v is symmetric if and only if T, T ′ ∈ 2N\∅ and |T | = |T ′| imply
q(T, v) = q(T ′, v).

Now, the change in the coefficients q({i}, v), i ∈ N , corresponds strategically
equivalent transformation, so the proof is completed. �

4.2 Proof of Condition 2

We prove that Condition 2 is equivalent to PS property introduced by Kar et
al. (2009). Let us review the definition. A game v ∈ Γ satisfies PS property
if the following condition is satisfied: for any i ∈ N , there exists ci ∈ R such
that

∆iv(S) + ∆iv
(
N\(S ∪ {i})

)
= ci for all S ⊆ N\{i}.
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The condition says that, for any player i, the sum of marginal contributions
to a coalition and its complement is always constant.

We have the following result:

Proposition 2 Let v ∈ Γ. Then, v satisfies PS property if and only if v
satisfies Condition 2.

Before giving a proof, we briefly explain why this proposition holds. The
statement of Condition 2 raises the following question: why the result holds
only for even number. In order to answer this question, let us take a coalition
T ∈ 2N\∅ where |T | is an even number, and go back to the definition of ū

f(T )
T .

The game assigns 1 to a coalition S if S includes half players of T . Note that,
for any coalition S ∈ 2N , we have the following: |S ∩ T | = |T |

2
if and only if

|(N\S) ∩ T | = |T |
2
. It follows that

ū
f(|T |)
T (S) = ū

f(|T |)
T (N\S) for all S ∈ 2N . (4)

It is worth mentioning that if |T | is an odd number, then the above equality
does not necessarily hold. On the other hand, PS property can be character-
ized as follows:

Lemma 2 Let v ∈ Γ. Then, v satisfies PS property if and only if vSh(T ) =
vSh(N\T ) for all T ∈ 2N .

For the proof, see Appendix.
Let us give an additional notation. For a coalition T ∈ 2N\∅, we define

eT,N\T ∈ ΓN by

eT,N\T (S) =

{
1 if S = T or N\T,
0 otherwise.

We can easily check that the following equation holds: for any T ∈ 2N\∅,

ϕ(eT,N\T ) = 0. (5)

We now give a precise proof.

Proof of Proposition 2. Let ΓPS denote the set of all games which satisfy
PS property. Then, from Lemma 2,

ΓPS =
{
v ∈ Γ : vSh(T ) = vSh(N\T ) for all T ∈ 2N

}
.
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We define the set of games ΓQ by

ΓQ = Sp
(
{ūf(T )

T : T ∈ 2N , |T | ≥ 2, |T | is an even number} ∪ {ū1{i} : i ∈ N}
)
.

Our final goal is to prove that ΓPS = ΓQ.
Take an arbitrary player k ∈ N and fix. We define

Γ∗ = Sp
(
{eT,N\T : T ∈ 2N\∅, k /∈ T} ∪ {ū1{i} : i ∈ N}

)
.

Claim 1 The set of games {eT,N\T : T ∈ 2N\∅, k /∈ T} ∪ {ū1{i} : i ∈ N} is
linearly independent.

Proof. Take two vectors (βT )T∈2N\∅,k /∈T and (α{i})i∈N such that∑
T∈2N\∅,k /∈T

βT eT,N\T +
∑
i∈N

α{i}ū
1
{i} = 0. (6)

From linearity of the Shapley value,∑
T∈2N\∅,k /∈T

βTϕ(eT,N\T ) = −
∑
i∈N

α{i}ϕ(ū
1
{i}),

0 = −α. (7)

By substituting equation (7) to equation (6), we have∑
T∈2N\∅,k /∈T

βT eT,N\T = 0,

which implies that (βT )T∈2N\∅,k /∈T = 0. �

Claim 2 ΓPS = Γ∗.

Proof. Proof of ΓPS ⊆ Γ∗: Take an arbitrary game v ∈ ΓPS. Then,
vSh(T ) = vSh(N\T ), which implies that vSh ∈ Sp({eT,N\T : T ∈ 2N\∅, k /∈
T}). Since

v =
∑
i∈N

q({i}, v)ū1{i} + vSh,

we obtain v ∈ Γ∗.
Proof of Γ∗ ⊆ ΓPS: Take an arbitrary game v ∈ Γ∗. Then, from Claim 1,
there exists a unique vector (βT )T∈2N\∅,k /∈T , (α{i})i∈N such that

v =
∑

T∈2N\∅,k /∈T

βT eT,N\T +
∑
i∈N

α{i}ū
1
{i}. (8)
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From Linearity of the Shapley value and equation (5), we have

ϕ
( ∑
T∈2N\∅,k /∈T

βT eT,N\T

)
=

∑
T∈2N\∅,k /∈T

βTϕ(eT,N\T ) = 0.

From Theorem 2, the set of games {ūf(T )
T : T ∈ 2N , |T | ≥ 2} spans the null

space. So, there exists a unique vector (γT )T∈2N ,|T |≥2 such that∑
T∈2N\∅,k /∈T

βT eT,N\T =
∑

T∈2N :|T |≥2

γT ū
f(T )
T . (9)

By substituting equation (9) to equation (8), we obtain

v =
∑

T∈2N :|T |≥2

γT ū
f(T )
T +

∑
i∈N

α{i}ū
1
{i}.

Since the set of games {ūf(T )
T : T ∈ 2N\∅} is a basis of Γ, we must have

α{i} = q({i}, v). (10)

By substituting equation (10) to equation (8), we have

v =
∑

T∈2N\∅,i/∈T

βT eT,N\T +
∑
i∈N

q({i}, v)ū1{i},

vSh =
∑

T∈2N\∅,i/∈T

βT eT,N\T .

It follows that vSh(T ) = vSh(N\T ) for all T ∈ 2N . From Lemma 2, v ∈ ΓPS.
�

From Claim 2, our final goal is to prove that Γ∗ = ΓQ. Clearly, ΓQ ⊆ Γ∗

holds. In order to prove that the converse set-inclusion holds, we prove that
dimΓ∗ = dimΓQ.

dimΓPS = |{T ∈ 2N\∅ : k /∈ T}|+ n

= |{T ∈ 2N\k\∅}|+ n

= |{T ∈ 2N\k\∅ : |T | is an even number}|
+ |{T ∈ 2N\k\∅ : |T | is an odd number}|+ n

= |{T ∈ 2N\∅ : |T | is an even number, k /∈ T}|
+ |{T ∈ 2N\∅ : |T ∪ k| is an even number, k /∈ T}|+ n

= dimΓQ.

�
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4.3 Proof of Condition 3

In order to prove Condition 3, we give some preliminaries. For a subset
T ⊆ 2N\∅, we define χT by

χT (S) =

{
1 if S ∈ T ,
0 otherwise.

We define Shapley collection introduced by Chang and Tseng (2009). We
say that a subset T ⊆ 2N\∅ is a Shapley collection if the following condition
is satisfied:

ϕ(χT ) = 0.

For a coalition T ∈ 2N\∅, we define

C(T ) =

{{
S ∈ 2N\∅ : |T ∩ S| = |T |

2

}
if |T | is an even number,{

S ∈ 2N\∅ : |T ∩ S| = |T |+1
2

}
if |T | is an odd number.

The following lemma holds:

Lemma 3 Let T1, T2, · · · , Tk ∈ 2N\∅ be coalitions such that Tl∩Tm = ∅ and
|Tl| = |Tm| for all l,m = 1, · · · , k, l ̸= m. Then, ∩k

l=1C(Tl) is a Shapley
collection.

Proof. Let T = ∩k
l=1C(Tl) and t = f(Tl), l = 1, · · · , k. Then, χT is the

following game:

χT (S) =

{
1 if |S ∩ Tl| = t for all l = 1, · · · , k.
0 otherwise.

Take any two coalitions Ti and Tj, i ̸= j. Let i′ ∈ Ti and j′ ∈ Tj. Since
Ti ∩ Tj = ∅, we have i′ ̸= j′. Consider a permutation π on N which satisfies
the following conditions:

π(i′) = j′, π(Ti) = Tj, π(Tj) = Ti,

π(Tl) = Tl for all l = 1, · · · , k, l ̸= i, h ̸= j.

Note that the permutation π is well-defined since |Ti| = |Tj|. Let S ∈ 2N .
The following equations are equivalent:

χT (S) = 1,

|S ∩ Tl| = t for all l = 1, · · · , k,
|π(S) ∩ π(Tl)| = t for all l = 1, · · · , k,

|π(S) ∩ Tl| = t for all l = 1, · · · , k,
χT
(
π(S)

)
= 1.

13



It follows that for any S ∈ 2N , we have χT (S) = χT (πS). From Symmetry,
ϕi′(N,χT ) = ϕj′(N,χT ). Since i

′ and j′ are arbitrary players, for any i′, j′ ∈
∪k

i=1Ti, we have ϕi′(N,χT ) = ϕj′(N,χT ). Efficiency completes the proof. �

We define three families of subsets of 2N\N .

P = {T ⊆ 2N\N : T = C(T ) for some T ∈ Q(v)},
R = {T ⊆ 2N\N : T = ∩l

i=1Ti, where Ti ∈ P for all i = 1, · · · , l, 1 ≤ l ≤ |Q(v)|},
S = {T ⊆ 2N\N : T is a Shapley collection}.

In the remaining part, we introduce some notations in measure theory. Let
X be a set and X be a family of subsets of X. We say that X is a Dynkin
class if the following three conditions are satisfied:

1 X ∈ X .

2 Let T , T ′ ∈ X be sets such that T ⊆ T ′. Then T ′\T ∈ X .

3 Let {Tk}∞k=1 be a family of disjoint sets in X . Then, ∪∞
k=1Tk ∈ X .

Lemma 4 S is a Dynkin class.

Proof. Step 1: From symmetry,

ϕ(χ2N\N) = 0.

It follows that 2N\N ∈ S.
Step 2: Suppose that T , T ′ ∈ S, T ⊆ T ′. From linearity,

ϕ(χT ′\T ) = ϕ(χT ′)− ϕ(χT ) = 0.

It follows that T ′\T ∈ S.
Step 3: Let {Tk}∞k=1 be a family of disjoint sets in S. We define T = ∪∞

k=1Tk.
From linearity,

ϕ(χT ) =
∞∑
k=1

ϕ(χTk) = 0.

It follows that T ∈ S. �

Let σ(P) denote the σ-algebra generated from P . Let D(R) denote the
Dynkin class generated from R. With respect to Dynkin class, the following
result is known:
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Remark 1 (Dynkin’s π-λ theorem) Let X be a set and let X be a family
of subsets of X. Suppose that T , T ′ ∈ X implies T ∩T ′ ∈ X . Then, we have
D(X ) = σ(X ).

This theorem implies the following lemma:

Lemma 5 σ(P) ⊆ S.

Proof. Note that from the definition of R, for any T , T ′ ∈ R, we have
T ∩ T ′ ∈ R. In addition, from Lemma 3, R ⊆ S. From Dynkin’s π-λ
theorem,

σ(P) = σ(R) = D(R) ⊆ S,

where the last set-inclusion holds from Lemma 4. �
We are ready to show that, under Condition 3, the Shapley value and the
prenucleolus coincide. In the proof, we use the following result proved by
Kohlberg (1971):

Remark 2 (Kohlberg (1971)) Let v ∈ Γ and x ∈ Rn. Then, x = ν(v) if
and only if for any α ∈ R, {S ⊆ N,S ̸= ∅ : e(S, x, v) ≥ α} ̸= ∅ implies that
the family of coalitions is balanced.

Proposition 3 If v ∈ Γ satisfies Condition 3, then ϕ(v) = ν(v).

Proof. Let S ∈ 2N\∅ be fixed. We define A(S) by

A(S) = {R ∈ 2N\∅ : R ∈ C(Ti) if and only if S ∈ C(Ti) for all i = 1, · · · , k}.

Then, from Lemma 5, A(S) is a Shapley collection, especially, balanced. In
addition,

vSh(S) = vSh(R) for all R ∈ A(S).

Then, for any k ∈ R, {T ∈ 2N : vSh(T ) ≥ k} ̸= ∅ implies

{T ∈ 2N : vSh(T ) ≥ k} = ∪T∈2N\∅:vSh(T )≥kA(T ).

Since the union of balanced coalitions is again balanced, together with Re-
mark 2, we have

ν(vSh) = 0 = ϕ(vSh).

From Weak Strategic Invariance,

ϕ(v) = ϕ(vSh) + ϕ(v) = ν(vSh) + ϕ(v) = ν(v),

which completes the proof. �
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Suppose that a game v satisfies Condition 3. Suppose also for any T ∈ Q(v),
|T | is an odd number. Then, from Propositions 1 and 2, the game v is not
symmetric, and does not satisfy PS property. However, from Proposition 3,
ϕ(v) = ν(v) holds. In this sense, new sufficient coincidence condition of this
paper is described by Condition 3.
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Appendix

Proof of Lemma 1. Let T ⊆ N , |T | ≥ 2, k ∈ N, 2 ≤ k ≤ |T |. We prove that
the following equation holds:

ūkT =
1

k

(∑
i∈T ū

(k−1)
T\{i} − (|T | − k + 1)ū

(k−1)
T

)
.

Let S ⊆ N , S ̸= ∅. We calculate the worth of S of both sides.

Case 1 0 ≤ |T ∩ S| ≤ k − 2.

From the definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider

the game ū
(k−1)
T\{i}, i ∈ T .

If i ∈ S, |(T\{i}) ∩ S| ≤ k − 3.

If i /∈ S, |(T\{i}) ∩ S| ≤ k − 2.

It follows that ū
(k−1)
T\{i}(S) = 0 for all i ∈ T .

Case 2 k + 1 ≤ |T ∩ S| ≤ |T |.

From the definition of ūkT , we have ūkT (S) = ū
(k−1)
T (S) = 0. Consider

the game ū
(k−1)
T\{i}, i ∈ T .

If i ∈ S, |(T\{i}) ∩ S| ≥ k.

If i /∈ S, |(T\{i}) ∩ S| ≥ k + 1.

It follows that ū
(k−1)
T\{i}(S) = 0 for all i ∈ T .

Case 3 |T ∩ S| = k − 1.

From the definition of ūkT , we have ūkT (S) = 0. Let i ∈ T .

If i ∈ S, |(T\{i}) ∩ S| = k − 2.

If i /∈ S, |(T\{i}) ∩ S| = k − 1.

That is, if i ∈ S ∩ T , then ū(k−1)
T\{i}(S) = 0. As a result,∑

i∈T

ū
(k−1)
T\{i}(S) =

∑
i∈T\S

ū
(k−1)
T\{i}(S)

=
∑
i∈T\S

ū
(k−1)
T (S)

= |T | − (k − 1),
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where the second equality holds from the fact that (T\{i})∩S = T ∩S
for i ∈ T\S. Together with −(|T | − k + 1)ū

(k−1)
T (S) = −(|T | − k + 1),

the right-hand side is equal to 0, which is equal to the left-hand side.

Case 4 |T ∩ S| = k.

From the definition of ūkT , we have ū
(k−1)
T (S) = 0. Let i ∈ T .

If i ∈ S, |(T\{i}) ∩ S| = k − 1,

If i /∈ S, |(T\{i}) ∩ S| = k.

It follows that
∑

i∈T ū
(k−1)
T\{i}(S) = k. By multiplying 1

k
, the right-hand

side is equal to 1, which is equal to the left-hand side. �

Proof of Lemma 2. If v satisfies PS property, as Kar et al. (2009) proved,
we have

ϕ(v) = ν(v) =
(c1
2
, · · · , cn

2

)
.

We know that vSh(N) = vSh(∅) = 0. We proceed by induction. Suppose
that vSh(R) = vSh(R) for all R ⊆ N , |R| = r, and we prove the result for
T ⊆ N , |T | = r + 1, where r ≥ 0.

Let i ∈ T . Then,

v(T )− v(T\{i}) + v
(
(N\T ) ∪ {i}

)
− v(N\T ) = ci,

vSh(T )− vSh(T\{i}) + vSh
(
(N\T ) ∪ {i}

)
− vSh(N\T ) = ci −

ci
2
− ci

2
= 0.

From the induction hypothesis, vSh(T\{i}) = vSh
(
(N\T ) ∪ {i}

)
. It follows

that

vSh(T ) = vSh(N\T ).

Conversely, suppose that vSh(T ) = vSh(N\T ) for all T ∈ 2N . Then, for any
T ∈ 2N ,

vSh(T )− vSh(T\{i}) + vSh
(
(N\T ) ∪ {i}

)
− vSh(N\T ) = 0,

v(T )− v(T\{i}) + v
(
(N\T ) ∪ {i}

)
− v(N\T ) = 2ϕi(v),

which means that PS property holds. �
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