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Abstract

This study develops a war-of-attrition model with the asymmetric feature that one

player can be defeated by the other but not vice versa; that is, only one player has

an exogenous probability of being forced to capitulate. With complete information,

the equilibria are almost identical to the canonical war-of-attrition model. On the

other hand, with incomplete information on a player�s robustness, a war where both

players �ght for some duration emerges. Moreover, a player who is never defeated

may capitulate in equilibrium, and this player will give in earlier if the other player�s

�ghting costs are greater.
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1 Introduction

This study expands upon Maynard Smith�s (1974) war-of-attrition model by introducing a

new feature where one player can be defeated by the other but not vice versa. To be precise,

only one player has an exogenous probability of being forced to capitulate and never �ghting

again (i.e., of being defeated).

The war-of-attrition model has been applied to many topics, such as price wars and ex-

its (Kreps and Wilson, 1982; Ghemawat and Nalebu¤, 1985; Fudenberg and Tirole, 1986),

patent races (Fudenberg et al., 1983), public goods provisions (Bliss and Nalebu¤, 1984),

labor strikes (Kennan and Wilson, 1989), and real wars (Langlois and Langlois, 2009). How-

ever, these studies fail to account for a situation in which only one player may be defeated.

A �tting example is a war against terrorism. In this con�ict, only the terrorist group

faces the possibility of being defeated because the targeted state has a far stronger military

and substantially more resources. However, despite the possibility of defeat, the terrorist

group may still decide to attack, which, in turn, may lead the targeted state to compromise

with them.1 Another possible example is a price war (or patent race) between a large �rm

and a small store. In such a competition, the small store faces the possibility that �nancial

institutions may not lend them additional money, whereas a large �rm usually has many

channels for funding.

This study analyzes two-player models with both complete and incomplete information.

Both players are at war, and their strategic variable is the timing of their capitulation.

The war continues until one of the players either concedes or is defeated. Suppose that

player 2 may be defeated by player 1, but not vice versa. With complete information, the

equilibria are almost identical to the canonical war-of-attrition model: either player gives in

immediately or a war endures as long as the players choose mixed strategies. Unlike in the

1Attrition is a major strategy for terrorist groups. For example, the Irish Republican Army (IRA)

explicitly included attrition among its primary strategies in its manual, the IRA Green Book, which states:

�[a] war of attrition against enemy personnel ... is aimed at causing as many casualties as possible so as to

create a demand from their people at home for their withdrawal (O�Brien 1999).�Kydd and Walter (2006)

also recognize attrition as one of the four strategies deployed by terrorists to in�uence their target state�s

policies.
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standard model, there is a unique equilibrium where player 2 immediately surrenders when

player 1 has a su¢ ciently greater bene�t and lower cost.

In the incomplete information model, player 2 knows his/her robustness, but player 1

does not. A class of equilibria then emerge where both players �ght for some duration, so

an enduring war that lasts for an indeterminate amount of time can emerge. Our innovation

lies in player 1�s Bayesian learning of his/her adversary�s robustness. As the war wages

on, player 1 updates his/her belief regarding player 2�s robustness. A prolonged war, thus,

indicates to player 1 that player 2 is harder to defeat than originally anticipated. Thus,

player 1 prefers to �ght in the early periods but gives in when the war is prolonged, and

player 2 has an incentive to wait until player 1 gives in. Thus, even in one-sided games, an

invincible player may concede in equilibrium. Moreover, player 1 may capitulate earlier if

player 2�s �ghting cost is greater and bene�t from winning is lower. This is because, under

these circumstances, a weaker player 2 would avoid �ghting; therefore, by doing so any way,

player 1 would be lead to believe that he/she was �ghting against a stronger opponent.

1.1 Related Literature

The war-of-attrition model with complete information was generalized by Bishop and Can-

nings (1978) and Hendricks, Weiss, and Wilson (1988). Various versions of the model with

incomplete information were developed by Bishop, Cannings, and Maynard Smith (1978),

Riley (1980), Milgrom and Weber (1985), Nalebu¤ and Riley (1985), Ponsati and Sákovics

(1995), Bulow and Klemperer (1999), and Hörner and Sahuguet (2011), just to name a few.

However, these studies do not consider the possibility that a player could be defeated, and

thus, only deem the wars over when one player concedes.

Some studies suppose that the war has an exogenous (and possibly random) end period

(Ordover and Rubinstein, 1986; Kim and Xu Lee, 2014). In this scenario, though, both

players may be able to obtain positive bene�ts at the end of the war, which does not imply

that one of the players is defeated. The possibility of defeat is explored by Langlois and

Langlois (2009). In their model, players� resources decrease over time, and if a player�s

resources reach zero, they are defeated; consequently, both players can be defeated. Thus,

to the best of my knowledge, this study is the �rst that analyzes one-sided games in a war
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of attrition where one player can be defeated by the other, but not vice versa.

On the other hand, some studies analyze wars of attrition between asymmetric players

who have di¤erent bene�ts, costs, or discount factors (Kambe, 1999; Abreu and Gul, 2000;

Myatt, 2005). One can infer that a player who has a higher bene�t, lower cost, or higher

discount factor is stronger than the other since such a player has a higher incentive to �ght.

My model provides a di¤erent description of asymmetric robustness; that is, only one player

can be defeated by the other.

The rest of the paper proceeds as follows: Section 2 develops a model with complete in-

formation. Section 3 further extends the model to include player 1�s asymmetric information

regarding player 2�s robustness, and Section 5 concludes.

2 Complete Information

2.1 Settings

The game involves two players, 1 and 2, who are at war. The model assumes that time is

continuous, t 2 [0;1]. Players 1 and 2 strategically choose times T1 and T2, respectively,

to settle the war. Similar to a standard war-of-attrition model, these strategic decisions

are made simultaneously at the beginning of the game. Therefore, the equilibrium concepts

are a Nash equilibrium with complete information and a Bayesian�Nash equilibrium with

incomplete information.

Player 2 faces a risk of defeat, where he/she is not strong enough to overcome player 1.

Player 2 is defeated when t = � , where � 2 [0;1) is a random variable with the cumulative

distribution function F (�) � 1 � exp (�r�).2 The parameter r 2 (0; 1) denotes player 2�s

robustness in �ghting. Because the expected timing of player 2�s defeat is 1=r, a larger r

implies that player 2 is more likely to be defeated early.

If player 1 concedes before player 2 gives in or is defeated (T1 < minf� ; T2g), player 2 wins

a one-shot bene�t, b2 > 0, at t = T1, while player 1 gains nothing. By contrast, if player 2

gives in or is defeated before or at the same time as player 1�s concession (T1 � minf� ; T2g),
2The exponential distribution greatly simpli�es the players�equilibrium strategies, so this study employs

it.
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player 1 secures bene�t b1 at t = minf� ; T2g, while player 2 gains nothing.3 The war in�icts

costs c1 and c2 on player 1 and player 2, respectively, per unit of time.

The players�expected payo¤s at the game�s onset can be obtained as follows:

U1 (T1; T2) �I(T1 < T2)F (T1jr) b1 + I (T1 � T2) b1

�c1

 Z minfT1;T2g

0

�dF (� jr) +
Z 1

minfT1;T2g
minfT1; T2gdF (� jr)

!
=I (T1 < T2) (1� exp (�rT1))b1 + I (T1 � T2) b1 �

c1
r
(1� exp (�rminfT1; T2g))

U2 (T1; T2) � I(T1 < T2)
�
1� F

�
T2jri

��
b2

�c2

 Z minfT1;T2g

0

�dF (� jr) +
Z 1

minfT1;T2g
minfT1; T2gdF (� jr)

!
=I (T1 < T2) exp (�rT1) b2 �

c2
r
(1� exp (�rminfT1; T2g)) ;

where I (�) is an indicator that equals 1 if its condition holds and 0 otherwise.

Following the standard war-of-attrition model, we assume that the players are risk-neutral

and that there is no time discounting. Even if risk aversion and time discounting were to be

introduced, the main implications of our model would not change, though the duration of

the war would be shorter.

2.2 Equilibrium

The following proposition summarizes the Nash equilibria of the model with complete infor-

mation.4

Proposition 1 The game has Nash equilibria with the following properties:

(i) If b1r > c1, player 2 immediately gives in (T2 = 0).

(ii) If b1r < c1, the following three types of equilibria emerge:

3The assumption regarding payo¤s when T1 = T2 is not problematic because T1 6= T2 in equilibrium,

which I shall show later. In addition, the probability that T1 = � is zero and can be ignored.
4It is also possible that b1r = c1, while player 1 is indi¤erent to T1. To simplify the analysis, I disregard

this case. Put simply, in equilibrium, player 1 chooses any T1, and if this T1 is su¢ ciently high, player 2

immediately surrenders. If T1 is su¢ ciently low, player 2 chooses T2 > T1.
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(a) Player 1 immediately gives in (T1 = 0).

(b) Player 2 immediately gives in (T2 = 0).

(c) Both players back down probabilistically such that

Pr (T1 < t) = 1� exp
�
�
�
c2
b2
+ r

�
t

�
,

Pr (T2 < t) = 1� exp
��
r � c1

b1

�
t

�
.

Proof. See Appendix A.1.

Player 1�s rational choice of T1 depends on the relative sizes of the marginal bene�t (b1r)

and the marginal cost (c1) of extending the war. The marginal bene�t and cost are indepen-

dent of T1 because the exponential distribution is memoryless. That is, Pr (� > t+�tj� > t)

= Pr (� > �t). If b1r is su¢ ciently low and c1 is su¢ ciently high (Proposition 1 (ii)), sim-

ilar to the canonical war-of-attrition model, both players will receive a negative payo¤ for

extending the �ght. Thus, the equilibria resemble those of the standard war-of-attrition

model. In the pure-strategy equilibria (a; b), the game immediately ends. It is only in the

mixed-strategy equilibrium (c) that the war can last for an indeterminate length of time.

On the other hand, if b1r is su¢ ciently high and c1 is su¢ ciently low (Proposition 1 (i)),

there exists a unique type of equilibria where player 2 concedes immediately. This is because

player 1 has a positive payo¤ for extending the �ght (because of high b1r and low c1), so

he/she has an incentive to wait until player 2 is defeated. Thus, as player 2 has no hope of

obtaining b2, he/she will give in at the beginning of the game.

These results suggest that the war can only be maintained in the mixed-strategy equi-

librium in which player 1 has a higher probability of conceding earlier when b1 = b2 and

c1 = c2.5 This seems unrealistic as it requires an invincible player to concede more quickly

than a vulnerable one. A similar problem can be found in the standard war-of-attrition

model with asymmetric bene�ts (b1 6= b2) and/or costs (c1 6= c2): The player with a higher

bi and a lower ci has a higher probability of conceding earlier.6 Kornhauser, Rubinstein,

5This is because a player�s mixed strategy must make his/her opponent indi¤erent between �ghting and

giving in. Since player 2 has a lower expected payo¤ than player 1 when b1 = b2 and c1 = c2 (because of the

probability of defeat), player 1 must have a higher probability of giving in than player 2.
6My model has the same implication when r = 0.
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and Wilson (1989) assert that �the weaker player ... should concede immediately.�There-

fore, even though the con�ict is maintained in a mixed-strategy equilibrium, it is di¢ cult to

justify these strategies.7 Proposition 1 (i) shows the unique type of equilibria proposed by

Kornhauser, Rubinstein, and Wilson (1989) in which the weak player concedes immediately.

However, this cannot explain why such wars occur.

3 Asymmetric Information

3.1 Settings

Next, I introduce incomplete information about player 2�s robustness into the model. Sup-

pose that player 1 is uncertain about player 2�s robustness, r, while player 2 may know it.

Although player 1 does not know the true value of r, he/she knows that player 2 is either a

strong (S) type with r = rS or a weak (W ) type with r = rW > rS, and that this character-

istic is distributed according to prior probabilities Pr(rS) 2 (0; 1) and Pr(rW ) = 1� Pr(rS).

If Player 2 has rW , he/she is more likely to be defeated early.

In order to rule out uninteresting cases that resemble that with complete information

(Proposition 1), I impose the following restrictions:

Assumption 1 rS < c1=b1 < Pr(rS)rS + Pr (rW ) rW .

If rS > c1=b1, the equilibria are identical to Proposition 1 (i); furthermore, if Pr(rS)rS +

Pr (rW ) rW < c1=b1, the equilibria are identical to Proposition 1 (ii).8

3.2 Equilibrium with an On-Going War

This section shows an equilibrium where player 1 chooses a pure strategy to �ght until a

certain period (i.e., T1 2 (0;1)), because these novel equilibria do not appear in the standard
7Kambe (1999), Abreu and Gul (2000), and Myatt (2005) present reasonable equilibria for the model

with asymmetric players by introducing a small probability that a player never concedes.
8I also disregard the cases where player 1 may be indi¤erent between �ghting and not �ghting, that is,

rS = c1=b1 and Pr(rS)rS + Pr (rW ) rW = c1=b1.
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war-of-attrition model or the model with complete information. The other equilibria will be

discussed in Section 3.3.

When player 1 chooses a pure strategy, T1 2 (0;1), player 2 (who is some type-R 2

fS;Wg) may adopt a mixed strategy between �ghting on (T2 > T1) and giving in immediately

(T2 = 0); namely, with probability �R 2 [0; 1], type R intends to �ght until player 1 gives

in (T2 > T1), and with probability 1 � �R, type R immediately gives in (T2 = 0). I focus

only on T2 = 0 and T2 > T1, because any T2 2 (0; T1], which is costly but never wins b2, is

strictly dominated by T2 = 0. I de�ne �R as each type of R�s mixed strategy and � as the

set of the two types�mixed strategies (� � (�S; �W )).

3.2.1 Player 1�s Incentive to Fight

Player 1�s expected payo¤ at the game�s onset is expressed as follows:

V1(T1;�) �
X

r2frS ;rW g

Pr (rj�)
�
(1� exp (�rT1)) b1 �

c1
r
(1� exp (�rT1))

�
: (1)

Player 1�s rational decision (not) to give in is based on his/her estimate of player 2�s ro-

bustness, r, in each period.9 By Bayes�rule, player 1�s belief regarding the group�s type of

weakness in period t can be shown as follows:

Pr (rW jt;�) �
Pr (rW )�W exp (�rW t)

Pr(rS)�S exp (�rSt) + Pr (rW )�W exp (�rW t)
;

which decreases with t. This formula suggests that longer periods of �ghting drive player 1 to

revise his/her estimate of player 2�s robustness (or lower the expected value of r), expressed

as

E (rjt;�) � [1� Pr(rW jt;�)]rS + Pr (rW jt;�) rW :

The following lemma summarizes player 1�s incentive to �ght.

Lemma 1 Suppose Assumption 1 holds. If c1=b1 < E (rjt = 0;�), player 1 has an incentive

to �ght without conceding, at least until t = T �1 (�) 2 (0;1) such that E (rjT �1 (�);�) b1 = c1
9Even though player 1 decides T1 at period 0, he/she predicts future, revised beliefs and chooses based

upon them. This assumption is not equivalent to sequential rationality because I do not assume rationality

in each period, and player 1 can know these revised beliefs in period 0.
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or

T �1 (�) � ln
 
Pr (rW )�W
Pr(rS)�S

rW � c1
b1

c1
b1
� rS

! 1
rW�rS

: (2)

If c1=b1 � E (rjt = 0;�), T �1 (�) = 0.

Proof. Suppose c1=b1 < E (rjt = 0;�). As in Proposition 1, the relative sizes of the mar-

ginal bene�t, E (rjt;�) b1, and marginal cost, c1, of extending the �ght (both of which can be

derived from Equation (1)) determine the timing, T1. The timing, T �1 (�) can be derived from

the condition that E (rjT1;�) b1 = c1, which yields T1 = T �1 (�) in Equation (2). By Assump-

tion 1, T �1 (�) is positive and �nite when c1=b1 < E (rjt = 0;�). If c1=b1 � E (rjt = 0;�),

then T �1 (�) in Equation (2) is negative, so player 1 may not have an incentive to �ght at

period 0.

If the marginal bene�t of extending the �ght (E (rjT1;�) b1) is greater than the marginal

cost (c1), player 1 has an incentive to �ght and never concede. As it is gradually revealed that

player 2 is strong, the marginal bene�t decreases while the marginal cost remains unchanged.

Because of Assumption 1, the marginal cost is greater than the marginal bene�t when it is

known that player 2 is strong. Thus, player 1 will �ght at least until T �1 (�) because the

marginal bene�t will be greater than the marginal cost until that point.

Hereafter, suppose that player 1 concedes at T �1 (�). Lemma 1 is related to Proposition 1

in that this strategy corresponds to the shift of the equilibrium from the case in Proposition

1-(i) to the case in Proposition 1-(ii-a). That is, when the marginal bene�t falls beneath the

marginal cost, player 1 will concede. This is because, as player 1 discovers that player 2 is

strong, he/she becomes less con�dent about quickly defeating his/her adversary and more

weary of the war. Consequently, player 1 will decide to give in.

Note that there is still a possibility that players may choose mixed strategies after T �1 (�)

(as in Proposition 1-(ii-c)). However, if the players choose such strategies, player 2 will be

indi¤erent between �ghting and giving in after T �1 (�). This means that player 2�s expected

utility at time T �1 (�) (and thereafter) is zero. In this case, player 2 has no incentive to �ght

until T �1 (�) because, at period 0, player 2�s expected payo¤ for �ghting is the same as the

expected cost until that point (thus negative).

Moreover, there is a possibility that player 1 will choose a pure strategy, T1, such that
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T1 > T
�
1 (�) (Proposition 1-(ii-b)). However, player 1 has no reason to choose T1 > T

�
1 (�)

such that T2 > T1 because �ghting in (T �1 (�); T1] has a negative expected payo¤, so player

1 has an incentive to choose T �1 (�) instead. Furthermore, since any T2 2 (0; T1] is strictly

dominated by T2 = 0 for player 2, T1 > T �1 (�) can be the equilibrium only if T2 = 0. I will

discuss this equilibrium in Section 3.3.

3.2.2 Equilibrium

When player 1 chooses a pure strategy, T1, each type of R�s payo¤ at the beginning of the

game for continuing to �ght (T2 > T1) is as follows:

VR(T1) � exp (�rRT1) b2 �
c2
rR
(1� exp (�rRT1)) : (3)

Therefore, player 2, no matter his/her type, will be willing to wage war if VR(T1) � 0. Player

2�s rational strategies comprise the following relationships between the two types.

Lemma 2 Suppose that player 1 chooses a pure strategy, T1 2 (0;1). Then, (i) if a weak

type has a non-negative expected payo¤ for �ghting (T2 > T1), then a strong type will have

a positive expected payo¤, so if �W > 0 in equilibrium, �S = 1. (ii) If a strong type has a

non-positive expected payo¤ for �ghting, then a weak type will have a negative payo¤, so if

�S < 1 in equilibrium, �W = 0.

Proof. See Appendix A.2.

Lemma 2 assures that a strong type of player 2 will �ght just as often as a weak type.

Therefore, there are three possible equilibria (except � = (0; 0)):

� �I � (1; 1) ;

� �II � (1; �W ) with �W 2 (0; 1);

� �III � (�S; 0) with �S 2 (0; 1].

However, �III is not an equilibrium. If only the strong type �ghts, the weak type will

obtain a positive expected payo¤ by choosing �W = 1, because, from Assumption 1 and

Lemma 1, T �1 (�
III) = 0. As such, the following proposition is obtained.
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Proposition 2 Suppose Assumption 1 holds. Then, the following two types of equilibria

exist:

(i) Equilibrium I (Pooling equilibrium): If and only if VW (T �1 (�
I)) � 0, will player

1 �ght until t = T �1 (�
I) (as de�ned in Lemma 1) and player 2 will �ght continually (T2 >

T �1 (�
I) + 1) regardless of his/her type.

(ii) Equilibrium II (Semi-separating equilibrium): (a) If and only if VW (T �1 (�
I)) <

0, will player 1 choose T1 = T �1 (b�II) and player 2 will choose b�II � (1; �̂W ), which satis�es
VW (T

�
1 (b�II)) = 0, or

b2 exp
�
�rWT �1 (b�II)� = c2� 1

rW
� 1

rW
exp

�
�rWT �1 (b�II)�� : (4)

(b) Additionally, �̂W is uniquely determined in equilibrium.10

Proof. See Appendix A.3.

First, if VR(T �1 (�
I)) � 0 for both types, player 2 will be willing to �ght regardless of

his/her robustness, r. Namely, T2 > T �1 (�
I) + 1 so that player 2�s strategy does not reveal

his/her robustness, r, to player 1.11 The Bayesian�Nash equilibrium must thus be a pooling

equilibrium, where player 1 adopts the same strategy, T �1 (�
I), for both types.12

On the other hand, if VR(T �1 (�
I)) < 0, a semi-separating equilibrium with �II exists.

In order for the weak type to randomize his/her strategy in equilibrium, he/she must be

indi¤erent between �ghting and not �ghting, or he/she will choose �̂W such that (4) holds. As

�W decreases, T �1 (�
II) decreases (to zero), and VW (T �1 (�

II)) increases (to be positive). Thus,

10My interpretation of the weak type�s mixed strategy in equilibrium is similar to that of Harsanyi (1973),

according to whom a mixed strategy can be �puri�ed� by incorporating uncertainty about the player�s

preference. In my model, the weak type may be further divided into two subcategories depending upon

his/her choice of pure strategies: a moderate type (who emerges with probability Pr (rW ) �̂W ) and a very

weak type (with probability Pr (rW ) (1� �̂W )).
11For player 1 to back down at t = T �1 (�), player 2 must be willing to �ght as long as T2 > T �1 (�) +

E (rjT �1 (�);�) (b1=c1), for which E (rjT �1 (�);�) (b1=c1) = 1 (Lemma 1). Player 1 will continue to �ght even

after t = T �1 (�) if player 2 gives in quickly.
12A similar equilibrium emerges even if player 2 does not know the true value of his/her own robustness,

r (but knows the prior probability distribution). Without being informed of the value of r, player 2 is

willing to �ght (T2 > T1 + 1) if
P

rR2frS ;rW g Pr (rR) [exp (�rRT1) b2 � (c2=rR) (1� exp (�rRT1))] � 0 and

to immediately give in (T2 = 0) otherwise.
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there exists �̂W . Note that a weak player 2 never chooses �W such that c1=b1 � E (rjt = 0;�).

If he/she did, player 1 would concede immediately, and a weak player 2 would certainly �ght.

In these equilibria, player 1 and a strong player 2 �ght for a certain period. Thus, the war

may continue until T �1 (�) (unless player 2 is defeated). Moreover, Proposition 2 implies that

there are equilibria where even a weak player 2 will attempt to in�uence player 1�s decision.

In my model, although player 2 has no chance to defeat player 1, even a weak type may �ght

if he/she anticipates that player 1 will back down (and a strong type will de�nitely �ght).

Indeed, player 1 may concede in equilibrium even though he/she can never be defeated and

can beat player 2.

My equilibrium results imply the following.

Proposition 3 (i) Player 1 capitulates earlier if the cost of �ghting is higher for player

2 and the bene�t lower; that is, T �1 (b�II) is smaller for a larger c2=b2 in a semi-separating
equilibrium. (ii) In a pooling equilibrium, c2=b2 does not a¤ect T �1 (�

I).

Proof. (i) As c2=b2 increases, T �1 (b�II) must maintain Equality (4). (ii) The timing of player
1�s capitulation, T �1 (�

I), is determined by the condition E (rjT �1 (�);�) b1 = c1 (Lemma 1),

which is una¤ected by the change in c2=b2 as long as player 2 still has an incentive to �ght

(VW (T �1 (�
I)) � 0).

Contrary to what one might think, Proposition 3 implies that as player 2�s �ghting costs

rise and the bene�t falls, player 1 may concede earlier rather than later. If �ghting poses a

heavy burden, a larger fraction of the weak types will avoid �ghting (or �̂W will fall), and as

a result, player 1 is more likely to confront strong types, making it more di¢ cult for player

1 to defeat his/her opponent.

3.3 Other Equilibria

Proposition 4 Suppose Assumption 1 holds. The following two types of equilibria also exist.

(i) Equilibrium III: Player 2 immediately gives in (T2 = 0) regardless of his/her type

(� = (0; 0)), and player 1 �ghts until t = T1 such that VS(T1) < 0.

(ii) Equilibrium IV: A weak player 2 immediately gives in. Player 1 and a strong player

12



2 back down probabilistically such that

Pr (T1 < t) = 1� exp
�
�
�
c2
b2
+ rS

�
t

�
,

Pr (T2 < t) = 1� exp
��
rS �

c1
b1

�
t

�
.

Proof. (i) If player 1 �ghts long enough (such that VR(T1) < 0 for R = S and W ), player

2 will immediately give in (T2 = 0). (ii) Suppose that a weak player 2 does not �ght, but

rather player 1 and a strong player 2 choose mixed strategies. For a strategy pro�le to form

a mixed-strategy equilibrium, both players must be indi¤erent between �ghting and not

�ghting in each period. Thus, their mixed strategies are derived using the same reasoning

as in Proposition 1 (ii-c). According to Lemma 2, when a strong type has a payo¤ of zero,

a weak type has a negative payo¤,13 and thus will not �ght.

These equilibria are the same as those in the model with complete information (Propo-

sition 1 (ii-b) and (ii-c)) and the standard war-of-attrition model.

Corollary 1 Suppose Assumption 1 holds. There does not exist any equilibrium other than

Equilibria I, II, III, and IV.

Proof. See Appendix A.4.

One important di¤erence between my model and the standard war-of-attrition model is

that there is no equilibrium in which player 1 concedes immediately. Both strong and weak

types of player 2 would have an incentive to �ght because they could get b2 immediately.

However, under Assumption 1, if both types �ght, player 1 also has an incentive to �ght

(T �1 (�
I) > 0).

Note that these equilibria (in Propositions 2 and 4) satisfy the conditions of a perfect

Bayesian equilibrium. This is because the model assumes continuous and in�nite periods,

thus, all periods are identical except in regards to the revised beliefs, which are the same as

13To be precise, a strong player 2 chooses a mixed strategy when (5) in Appendix A.1 is satis�ed with

r = rS . The left-hand side of (5) is the marginal bene�t of extending the �ght for player 2, so a weak player

2 has a lower marginal bene�t than a strong one since rW > rS . Thus, when a strong player 2 chooses a

mixed strategy (i.e., (5) holds with r = rS), a weak player 2 does not have an incentive to �ght.

13



those in the Bayesian�Nash equilibrium.14 I employ Bayesian�Nash equilibria to facilitate

comparisons between my model and the standard war-of-attrition model, which uses them

as well.

3.4 Di¤erences from the Standard Model

There are two signi�cant di¤erences between my model�s implications and those of the clas-

sical war-of-attrition model. First, my model allows for a unique equilibrium in which player

2, who can be defeated by player 1, concedes immediately. This occurs when the probability

of defeat is su¢ ciently high (r > c1=b1 in the complete-information model and rS > c1=b1 in

the asymmetric-information model). Moreover, when Assumption 1 holds in the asymmetric-

information model, there is no equilibrium in which player 1 (who is invincible) concedes

immediately. These equilibria con�rm the suggestion of Kornhauser, Rubinstein, and Wilson

(1989) who argued that a weak player (i.e., a vulnerable player in my model) should concede

immediately.

Second, and more importantly, an on-going war can occur in equilibrium. In Equilibria I

and II, player 1 and player 2 (strong types and some weak types) choose to �ght for a certain

period (T �1 (�)). During these periods, the war will end if and only if player 2 is defeated.

These equilibria simply show (i) why con�icts between players who have asymmetric power

(such as a war against terrorism) occur, (ii) why a vulnerable player (such as a terrorist

group) decides to attack even though it faces the risk of defeat, and (iii) why an invincible

player (such as the targeted state) decides to compromise in a war. To my knowledge, such

an equilibrium has not been found in any past extensions of the classical war-of-attrition

model.
14Put simply, if player 1 chooses to �ght, and player 2 chooses to concede in every period, the result is

identical to that of Equilibrium III. The marginal change in the mixed strategies�probabilities in Equilibrium

IV does not depend on t, so Equilibrium IV is also a perfect Bayesian equilibrium. Moreover, in Equilibria

I and II, player 1 has an incentive to �ght in every period before T �1 (�) (but not after) based on his revised

beliefs; thus, they are also perfect Bayesian equilibria.

14



4 Conclusion

In this article, I present a war-of-attrition model with a one-sided game: one player (player

2) can be defeated by the other (player 1) but not vice versa. The model with complete

information has the same implications as the standard war-of-attrition model if the proba-

bility that player 1 defeats player 2 is su¢ ciently low: the war will either (i) end immediately

because one of the players gives in at the outset, or (ii) endure so long as the players capitu-

late probabilistically. However, if the probability that player 1 defeats player 2 is su¢ ciently

high, there exists a unique type of equilibria where player 2 immediately surrenders.

On the other hand, in the model where player 1 is uncertain about player 2�s robustness,

there exists an equilibrium in which players �ght for a period of time. In this model, player

1 would prefer to �ght in the early periods but not in the long run, because he/she would

start to believe that player 2 was strong and di¢ cult to defeat. Thus, even though player

1 can never be defeated, he/she will give in. Player 2 will expect this, so even if he/she

is weak, he/she may prefer to �ght and may even bene�t from player 1�s concession. In

addition, player 1 may capitulate earlier if player 2�s �ghting costs are higher and bene�t

from winning lower. This is because a weak player 2 tends to avoid wars with high costs and

low bene�ts, implying that, once the �ghting has begun, player 1 has a higher probability of

facing a strong opponent, to whom he/she would prefer to concede.

I believe that there are many potential applications for this model (as mentioned in the

introduction). However, the implications described above must be investigated in greater

detail in order to pursue these applications. It may be useful for future studies to endog-

enize the probability of player 2�s defeat. This paper assumes an exogenous and identical

probability in every period; however, it is possible that this probability will change overtime

or that player 2 (or other players) may be able to increase or decrease it.
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A Proofs

A.1 Proposition 1

(i) The marginal bene�t of an in�nitesimal extension of the war is:

d
dT1
b1(1� exp (�rT1))
exp (�rT1)

= b1r;

On the other hand, the marginal cost is

d
dT1
c1
�
1
r
� 1

r
exp (�rT1)

�
exp (�rT1)

= c1:

If b1r > c1, player 1 is willing to �ght until player 2 gives in or is defeated (T1 > T2). In the

absence of the possibility of winning, player 2 is unwilling to �ght (T2 = 0).

(ii) If b1r < c1, a player�s rational strategy depends on how quickly the opponent gives in.

(ii-a) If player 2 is willing to �ght long enough, player 1 will immediately give in (T1 = 0). (ii-

b) If player 1 is willing to �ght long enough, player 2 will immediately give in (T2 = 0). (ii-c)

For a strategy pro�le to form a mixed-strategy equilibrium, both players must be indi¤erent

between �ghting and giving in. It su¢ ces that 
d
dt
Pr(T2 < t)

1� Pr(T2 < t)
+ r

!
b1 = c1 for player 1 

d
dt
Pr(T1 < t)

1� Pr(T1 < t)
� r
!
b2 = c2 for player 2. (5)

The mixed strategies are derived from the two di¤erential equations. �

A.2 Lemma 2

The proof focuses on the sign of VR(T1), because the sign determines type R�s rational

behavior. Put formally, if VR(T1) < 0, �R = 0; if VR(T1) = 0, �R 2 [0; 1]; and if VR(T1) > 0,

�R = 1 (in addition, �R 2 (0; 1) only if VR(T1) = 0). I thus examine how the sign of VR(T1)

changes with rR (recall that rS < rW ). For each R, I de�ne

�R � exp(rRT1)VR(T1); (6)
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whose sign coincides with that of VR(T1), because exp(rRT1) > 0.15 Its derivative with

respect to rR is:

@�R
@rR

=
c2

(rR)
2 (� exp (�rRT1) + (1� rRT1)) exp (rRT1) ;

which is negative unless rRT1 = 0. The negativity of @�R=@rR indicates that (i) if �W > 0,

�S = 1 and (ii) if �S < 1, �W = 0. �

A.3 Proposition 2

(i) By Lemma 1, T1 = T �1
�
�I
�
for player 1. For type R, any T2 that is greater than T1

(T2 > T1) is incentive compatible. If VW (T �1 (�
I)) < 0, the weak type has an incentive to

deviate by choosing �W = 0.

(ii) (a) By Lemma 1, T1 = T �1 (b�II) for player 1. According Lemma 2, �S = 1 because
�̂W > 0 and the weak type is indi¤erent because Equality (4) is satis�ed. If VW (T �1 (�

I)) � 0,

there is no �̂W 2 (0; 1) that satis�es Equality (4) because VW (T �1 (�II)) > VW (T �1 (�I)) � 0

for all �II . (b) First, if �W = 0, the expected payo¤ for the weak type is positive because

T �1 (�
III) = 0. Second, if �W = 1, the expected payo¤ is negative because VW (T �1 (�

I)) <

0. Third, as �W increases, T �1 (�
II) from Equation (2) increases. As T �1 (�

II) increases,

VW (T
�
1 (�

II)) continuously and strictly decreases. Thus, �̂W is uniquely determined. �

A.4 Corollary 1

In Section 3.2, I showed that, aside from Equilibria I, II, and III, there are no other equilibria

in which player 1 will choose a pure strategy, T1. Thus, suppose that player 1 chooses a mixed

strategy, in which case Lemma 2 still holds. This is because player 2�s expected utility is

the sum of all the utilities (VR(T1) in (3)) of player 1�s pure strategies, T1 that could result

from his/her mixed strategy, weighted by the probability that he/she �ghts until T1. Thus,

(i) a weak player 2 never �ghts longer than a strong player 2, and (ii) when a strong player

15I introduce �R to simplify the analysis. The change in rR has complex e¤ects in that @VR(T1)=@rR can

be positive, zero, or negative depending on T1. This is because as rR increases, the bene�t (i.e., the �rst

term on the right-hand side of Equation (3)) decreases, whereas the cost (the second term) may decrease. I

focus only on how the sign, not the value, of VR(T1) changes.
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2 chooses a mixed strategy (i.e., he/she is indi¤erent between �ghting and not �ghting in

t), a weak player 2 will not �ght (in t). I denote T 2 as the longest amount of time that the

strong type is willing to �ght in his/her (pure or mixed) strategy.

First, player 1 never choose a discrete mixed strategy before T 2.16

Lemma 3 Player 1 never choose a mixed strategy such that there is a positive probability

that he/she will give in at t0 or t00, where t0 < t00 and t0 < T 2, but not in (t0; t00).

Proof. Suppose that t0 < t00 < T 2. First, if the probability that player 2 concedes at [t0; t00]

is not positive, and a weak player 2 chooses to �ght in [t0; t00], then the marginal bene�t of

extending the �ght at t00 will be lower than the one at t0 (and the marginal cost of �ghting,

c, will not change) since E (rjt;�) decreases over [t0; t00]. Thus, player 1 cannot be indi¤erent

between t0 and t00, so it cannot be an equilibrium. If a weak player 2 does not �ght during

[t0; t00], player 1 will have a negative expected payo¤ for �ghting in that period (since the

marginal bene�t is lower than the marginal cost against a strong type), so it is pro�table to

deviate from t00 to t0.

Second, if the probability that player 2 concedes is positive in [t0; t00], player 2 will prefer

to give in at t0+ � where � is close to zero as opposed to giving in at (t0+ �; t00] because player

1 will never concede in (t0; t00). Third, since � is close to zero, player 1 will prefer to give in

at t0 + 2� rather than t0. Thus, it is not an equilibrium.

Suppose that t0 < T 2 � t00. Player 2 prefers giving in at t0 + � to giving in at (t0 + �; t00]

because player 1 never concedes in (t0; t00). Thus, T 2 = t0 + � when � is close to zero. Since

� is close to zero, player 1 will prefer giving in at t0 + 2� to giving in at t0. Thus, it is not

equilibrium.

The model considers time to be continuous, so there is such an � for all of player 1�s

discrete mixed strategies. Thus, player 1 never chooses such a strategy in equilibrium.

Suppose player 1 chooses a continuous mixed strategy. To make player 1 indi¤erent

between �ghting and not �ghting in any period, player 2 must also choose a continuous

16The one exception to this is the case in which player 1 chooses a discrete mixed strategy: When T2 = 0,

regardless of the type, player 1 chooses a mixed strategy in equilibrium from some su¢ ciently long periods

(Equilibrium III).
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mixed strategy. Note that player 1 not giving in until t > 0, then choosing a mixed strategy

after t is not an equilibrium. If player 1 chooses such strategy, player 2 will be indi¤erent

between �ghting and not �ghting after t, which means that player 2�s expected utility at

(and after) t is zero. In this case, there is no incentive for player 2 to �ght until t since player

2�s expected payo¤ is negative at period zero. Thus, both players need to choose continuous

mixed strategies from period zero onward to be in equilibrium.

As described in Lemma 2, when the weak type chooses a mixed strategy or �ghts con-

tinually, the strong type has an incentive to �ght continually. Thus, there are two possible

cases.

1. A strong type and player 1 choose a mixed strategy and a weak type concedes at period

0. (Equilibrium IV)

2. A strong type �ghts continually (T 2 = 1) and a weak type and player 1 choose a

mixed strategy.

Case 2 is not an equilibrium. Under Assumption 1, player 1 has an incentive �ght con-

tinually (i.e., the marginal bene�t of extending the �ght is always greater than the marginal

cost) against the weak type. On the other hand, player 1�s marginal bene�t of �ghting

against the strong type is lower than the marginal cost. Thus, regardless of the weak type�s

mixed strategy, player 1�s marginal bene�t decreases over time because E (rjt;�) decreases

over time. This means that player 1 cannot be indi¤erent between �ghting and not �ghting

in each period. �
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