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Abstract

In this paper, we give a necessary and sufficient condition under
which the Shapley value belongs to, or coincides with another solution
concept which satisfies Weak Strategic Invariance. Our approach is
based on the linear basis which has the following property: when we
express a game by a linear combination of the linear basis, the Shapley
value appears in the coefficients. We mainly discuss the relationship
between the Shapley value and the Core, the prenucleolus.
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1 Introduction

The purpose of this paper is to clarify the relationship between the Shapley
value and other solution concepts. Regarding this approach, the relationship
between the Shapley value and the Core has mainly been discussed. For
instance, Hoffmann and Sudhölter (2007) proved that the the Shapley value
belongs to the Core in exact assignment games. This result can be interpreted
as one of the sufficient conditions under which the Shapley value belongs to
the Core. The research about the condition can be traced back to Shapley
(1971), who proved that the Shapley value belongs to the Core in convex
games. Since the convexity of a game is not a necessary condition, many
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variations of convex games have also been proposed by weakening the re-
quirement. Iñarra and Usategui (1993) defined average convex games (which
include convex games) and partially average convex games (which include av-
erage convex games) and proved that the Shapley value belongs to the Core
in both class of games. Izawa and Takahashi (1998) defined totally convex
games (which include average convex games), and proved that their require-
ment was necessary and sufficient condition. We also provide a necessary
and sufficient condition, but our result is an extension of the previous works.
In Theorem 3, we give a necessary and sufficient condition under which the
Shapley value belongs to, or coincides with another solution concept which
satisfies Weak Strategic Invariance.

Weak Strategic Invariance is a very weak condition, and we can deal with
many solution concepts. In this paper, we mainly focus on the Core and the
prenucleolus. In Theorem 5, we show that, in the game where the Shapley
value does not belong to the Core, when the Shapley value first belongs to
the Core if the worth of the grand coalition alone continues to increase.

Regarding the coincidence of the Shpaley value and the prenucleolus, the
result of this paper will be clear in Corollary 2. We give the necessary and
sufficient condition of the coincidence for 3-person game as the condition
of the worths of coalitions. In particular, we show that the set of all 0-
normalized games where the Shapley value and the prenucleolus coincide
is equivalent to the union of all symmetric games and the set of all games
satisfying PS property, which was introduced by Kar, Mitra and Mutuswami
(2009).

This paper is organized as follows. Section 2 contains notations and
definitions. In Section 3, we give the definition of a linear basis of the set
of games introduced by Yokote (2013), which plays a crucial role in the
following sections. In Section 4, we focus on the relationship between the
Shapley value and other solution concepts by using the linear basis. Section
5 gives concluding remarks.

2 Notations and Definitions

2.1 Game and Coalition

For any two sets A and B, A ⊂ B means that A is a proper subset of B.
A ⊆ B means that A ⊂ B or A = B. |A| denote the cardinality of A.
Let N ⊂ N be a finite set of players, and let S ⊆ N be a coalition of N .
We define |N | = n. The characteristic function v : 2N → R assigns a real
number to each coalition of N , and satisfies v(∅) = 0. v(S) can be considered
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to be the worth of a coalition. The pair (N, v) is called a game, and the set
of all games is denoted as Γ. For any (N, v) ∈ Γ, let (S, v), S ⊆ N,S ̸= ∅
denote the restriction of (N, v) on S. For any (N, v), (N,w) ∈ Γ, we define
the sum of games (N, v + w) ∈ Γ as follows: (v + w)(S) = v(S) + w(S) for
all S ⊆ N,S ̸= ∅. A game (N, v) ∈ Γ is convex if the following property
is satisfied: v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for all S, T ⊆ N . A game
(N, v) ∈ Γ is simple if the following condition is satisfied: v(S) = 0 or 1 for
all S ⊆ N . A game (N, v) is 0-normalized if v({i}) = 0 for all i ∈ N .

Let (N, v) ∈ Γ and x ∈ Rn. Suppose that each coordinate i, i = 1, . . . , n,
of x corresponds to the amount player i receives in x. Then, we define the
excess of coalition S with respect to x as follows: e(S, x) = v(S)−

∑
i∈S xi.

We say that the family of coalitions S ⊆ 2N , ∅ /∈ S is balanced if the
following condition is satisfied: there exists a collection of positive numbers
(δS)S⊆N,S ̸=∅ such that ∑

S:i∈S,S∈S

δS = 1,

for all i ∈ N .

2.2 Value, Solution and Axiom

Let (N, v) be a game. We define the preimputation set as follows:

X(N, v) = {x ∈ Rn :
∑
i∈N

xi = v(N)}.

A value σ on Γ prescribes an element of X(N, v) to each game (N, v) ∈ Γ.
A solution ψ on Γ prescribes a subset of X(N, v) to each game (N, v) ∈ Γ.

We define three values on Γ. The Shapley value ϕ, introduced by Shapley
(1953), is defined as follows:

ϕi(N, v) =
∑

S⊆N :i∈S

(n− |S|)!(|S| − 1)!

n!

(
v(S)− v(S\{i})

)
,

for all i ∈ N . Note that the Shapley value is a linear function. Namely,
ϕ(N,αv + βw) = αϕ(N, v) + βϕ(N,w) for all (N, v), (N,w) ∈ Γ, α, β ∈ R.

The dividend of (N, v) ∈ Γ, introduced by Harsanyi (1959), is defined as
follows:

D(S, v) =

|S|−1∑
k=0

(−1)k
∑

T⊆S:|S|−|T |=k

v(T ),
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for all S ⊆ N,S ̸= ∅. The Shapley value can be calculated by using the
dividend.

ϕi(N, v) =
∑

T⊆N :i∈T

1

|T |
D(T, v),

for all i ∈ N .
For any two vectors x, y ∈ Rn, y ≥lex x means that y is greater than x

in the lexicographic ordering of Rn. Let θ(x) = (θ1(x), θ2(x), . . . , θ2n−2(x)) ∈
R2n−2 denote the sequence of excess of S ⊂ N,S ̸= ∅ with respect to x, where
θt(x) ≥ θt+1(X) for all t, 1 ≤ t ≤ 2n−3. By dropping the individual rational-
ity of the Nucleolus introduced by Schmeidler (1969), the prenucleolus can
be defined as follows:

PN(N, v) = {x ∈ X(N, v) : θ(y) ≥lex θ(x) for all y ∈ X(N, v)}.

It is known that the set {x ∈ X(N, v) : θ(y) ≥lex θ(x) for all y ∈ X(N, v)} is
non-empty and singleton, so we can identify the prenucleolus as a value on
Γ.

For any game (N, v), we define

mi(N, v) := v(N)− v(N\{i}),

and

b(N, v) :=
v(N)−

∑
i∈N mi

n
.

The ENSC value was defined by Driessen and Funaki (1991).

ENSCi(N, v) = mi(N, v) + b(N, v),

for all i ∈ N .
We give one solution defined on Γ. The Core is defined as follows:

C(N, v) =
{
x ∈ X(N, v) :

∑
i∈S

xi ≥ v(S) for all S ⊆ N,S ̸= ∅
}
.

A game (N, v) is called balanced if C(N, v) ̸= ∅.
For any game (N, v) ∈ Γ and β ∈ Rn, we define the game (N, v + β) ∈ Γ

as follows:
(v + β)(S) = v(S) +

∑
i∈S

βi,

for all S ⊆ N,S ̸= ∅. A value σ on Γ satisfies Weak Strategic Invariance if
the following condition is satisfied:

σ(N, v + β) = σ(N, v) + β,
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for all (N, v) ∈ Γ and β ∈ Rn. A solution ψ on Γ satisfies Weak Strategic
Invariance if the following condition is satisfied:

ψ(N, v + β) = {x+ β : x ∈ ψ(v)} if ψ(N, v) ̸= ∅,
ψ(N, v + β) = ∅ if ψ(N, v) = ∅,

for all (N, v) ∈ Γ and β ∈ Rn.

3 Linear basis, coefficients and the dividend

In this section, we give the definition of a new linear basis of the set of games
with player set N . The most famous one is unanimity games (uS)S⊆N,S ̸=∅,
which were first introduced by Shapley (1953).

uS(T ) =

{
1 if S ⊆ T,

0 otherwise.

Here, we define the one-join game for some coalition S ⊆ N,S ̸= ∅ as follows:

ūS(T ) =

{
1 if |T ∩ S| = 1,

0 otherwise.

This game was introduced by Yokote (2013).1 Let us interpret and compare
the above two games. First, take any game (N, v) ∈ Γ and coalition S ⊆
N,S ̸= ∅, and suppose that players in N\S live in a region. There is a pie
which yields a payoff of 1 in the region, but players in N\S cannot get the
pie (namely, they are null players). The players S are trying to go to the
region and get the pie. Then, unanimity game uS captures the situation in
which players in S can get the pie if and only if all players in S enter the
region. On the other hand, one-join game ūS captures the situation in which
a player in S can get the pie if and only if he is the first player who enters the
region. The cooperation of players in N\S has nothing to do with getting
the pie.

The following theorem was proved by Yokote (2013).2

Theorem 1 (Lemma 3 of Yokote (2013)) Let N be a set of players. Then,
the set of games (ūS)S⊆N,S ̸=∅ is a linear basis of the set of all games with
player set N .

1From the definition, one-join game is a simple game.
2Although Yokote (2013) proved the theorem by using the weighted version of the linear

basis, the result here can be easily obtained by letting ω = (1, · · · , 1).
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From Theorem 1, any game (N, v) ∈ Γ can be expressed by a linear combi-
nation of (ūS)S⊆N,S ̸=∅. Let dN(S, v) be the coefficient of ūS, S ⊆ N,S ̸= ∅ in
the linear combination. Namely,

v =
∑

S⊆N :S ̸=∅

dN(S, v)ūS. (1)

Let dN,v ∈ R2n−1 denote the column vector whose coordinate is dN(S, v), S ⊆
N,S ̸= ∅. We can rewrite equation (1) in the matrix form. Let Q̄N denote
the (2n − 1, 2n − 1) matrix whose column vector is ūS, S ⊆ N,S ̸= ∅. Then,

v = Q̄NdN,v. (2)

We can easily prove that Q̄N is a symmetric matrix.

Example 1 We give an example of Q̄N for 3-person game, N = {1, 2, 3}.

ū{1} ū{2} ū{3} ū{12} ū{13} ū{23} ūN

{1}　
{2}　
{3}　
{1, 2}　
{1, 3}　
{2, 3}　
N 　

1
0
0
1
1
0
1

0
1
0
1
0
1
1

0
0
1
0
1
1
1

1
1
0
0
1
1
0

1
0
1
1
0
1
0

0
1
1
1
1
0
0

1
1
1
0
0
0
0

And the example of dN,v is given as follows.

dN,v =



dN({1}, v)
dN({2}, v)
dN({3}, v)
dN({1, 2}, v)
dN({1, 3}, v)
dN({2, 3}, v)
dN(N, v)


.

The reason why we focus on this linear basis is that the coefficients of
ūS, |S| = 1, is precisely the Shapley value.

Theorem 2 (Theorem 2 of Yokote, Funaki and Kamijo (2013)) Let (N, v)
be a game. Then, we have

dN(S, v) = (−1)|S|−1
∑

T⊆N :S⊆T

1

|T |
D(T, v),
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for all S ⊆ N,S ̸= ∅. In particular,

dN({i}, v) =
∑

T⊆N :i∈T

1

|T |
D(T, v) = ϕi(N, v),

for all i ∈ N .

Note that we can calculate the coefficients dN(S, v), S ⊆ N,S ̸= ∅ by follow-
ing the same calculation of the Shapley value.

4 Relationship between the Shapley value and

other solution concepts

In this section, we focus on the relationship between the Shapley value and
other solution concepts which satisfy Weak Strategic Invariance. We first
introduce some additional notations.

For any (N, v) ∈ Γ, let d0N,v ∈ R2n−1 denote the column vector whose i-th
coordinate, 1 ≤ i ≤ n, is 0 and whose j-th coordinate, n + 1 ≤ j ≤ 2n − 1,
is equal to dN(S, v) for some S ⊆ N, |S| ≥ 2. We define3

vShN := Q̄Nd
0
N,v.

Similarly, let fN,v ∈ R2n−1 denote the column vector whose i-th coordinate,
1 ≤ i ≤ n, is ϕi(N, v) and whose j-th coordinate, n + 1 ≤ j ≤ 2n − 1, is 0.
Then, together with equation (2), we have

v = Q̄NdN,v

= Q̄N(d
0
N,v + fN,v)

= Q̄Nd
0
N,v + Q̄NfN,v.

Example 2 If we use the same 3-person game of Example 1, then

d0N,v =



0
0
0

dN({1, 2}, v)
dN({1, 3}, v)
dN({2, 3}, v)
dN(N, v)


, fN,v =



ϕ1(N, v)
ϕ2(N, v)
ϕ3(N, v)

0
0
0
0


.

3Take any (N, v) ∈ Γ, and we remark the definition of vSh
S for S ⊂ N,S ̸= ∅. The game

is given as follows: first, express the game (S, v) by a linear combination of (ūT )T⊆S,T ̸=∅.
Second,let the coefficients of ūT , |T | = 1 be 0. So, vSh

S is not a restriction of vSh
N on S.
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Note that the worth of each coalition is given as follows.

v({1}) = ϕ1(N, v) + dN({1, 2}, v) + dN({1, 3}, v) + dN(N, v),

v({2}) = ϕ2(N, v) + dN({1, 2}, v) + dN({2, 3}, v) + dN(N, v),

v({3}) = ϕ3(N, v) + dN({1, 3}, v) + dN({2, 3}, v) + dN(N, v),

v({1, 2}) = ϕ1(N, v) + ϕ2(N, v) + dN({1, 3}, v) + dN({2, 3}, v),
v({1, 3}) = ϕ1(N, v) + ϕ3(N, v) + dN({1, 2}, v) + dN({2, 3}, v),
v({2, 3}) = ϕ2(N, v) + ϕ3(N, v) + dN({1, 2}, v) + dN({1, 3}, v),

v(N) = ϕ1(N, v) + ϕ2(N, v) + ϕ3(N, v).

If we omit ϕi(N, v), i ∈ N from the equations above, then we have the game
Q̄Nd

0
N,v. On the other hand, if we omit dN(S, v), S ⊆ N,S ̸= ∅, then we have

the game Q̄NfN,v.

Since Q̄NfN,v =
∑

i∈N ϕi(N, v) · u{i}, we have v = vShN + ϕ(N, v). Now,
take any value σ which satisfies Weak Strategic Invariance. Weak Strategic
Invariance implies

σ(N, v) = σ(N, vShN + ϕ(N, v))

= σ(N, vShN ) + ϕ(N, v). (3)

We can apply the same argument for any solution ψ which satisfies Weak
Strategic Invariance. If ψ(N, vShN ) ̸= ∅, then we have

ψ(N, v) = {x+ ϕ(N, v) : x ∈ ψ(N, vShN )}. (4)

The above two equations (3) and (4) lead us to the following theorem.

Theorem 3 Let σ be a value on Γ which satisfies Weak Strategic Invariance.
Then,

ϕ(N, v) = σ(N, v) if and only if σ(N, vShN ) = 0.

Let ψ be a solution on Γ which satisfies Weak Strategic Invariance. Then,

ϕ(N, v) ∈ ψ(N, v) if and only if 0 ∈ ψ(N, vShN ).

Proof. From equation (3), ϕ(N, v) = σ(N, v) if and only if σ(N, vShN ) = 0.
The same argument holds for a solution ψ if we use equation (4). �
Note that (N, vShN ) is the game which is strategically equivalently transformed
with respect to the Shapley value. In other words, (N, vShN ) is the excess game
of (N, v) at ϕ(N, v). The point is that, from Theorem 2, we can get the game
vShN without calculating the Shapley value.
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4.1 The Shapley value and the Core

Let ΓSC := {(N, v) ∈ Γ : ϕ(N, v) ∈ C(N, v)}. First, we give a variation of
Theorem 3.

Theorem 4 (N, v) ∈ ΓSC if and only if

vShN (S) ≤ 0,

for all S ⊆ N .

The proof is obvious from the definition of the Core and Theorem 3.
We apply this theorem and give a corollary for 0-normalized 3-person

game.

Corollary 1 Let (N, v), N = {1, 2, 3}, be a 0-normalized balanced game
which satisfies v(N) ≥ 0. Then, ϕ(N, v) ∈ C(N, v) if and only if

v({1, 2}) + v({1, 3}) ≤ 4
(
v(N)− v({2, 3})

)
,

v({1, 2}) + v({2, 3}) ≤ 4
(
v(N)− v({1, 3})

)
,

v({1, 3}) + v({2, 3}) ≤ 4
(
v(N)− v({1, 2})

)
.

Proof. The condition of Theorem 4 is equivalent to

Q̄Nd
0
N,v =



1001101
0101011
0010111
1100110
1011010
0111100
1110000





0
0
0

dN({1, 2}, v)
dN({1, 3}, v)
dN({2, 3}, v)
dN(N, v)


≤ 0.

Since the first three columns of Q̄N are irrelevant, by omitting them, and by
multiplying 6 to d0N,v, we have

1101
1011
0111
0110
1010
1100
0000




dN({1, 2}, v)
dN({1, 3}, v)
dN({2, 3}, v)
dN(N, v)

 ≤ 0. (5)
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This condition is equivalent to

dN({1, 2}, v) + dN({1, 3}, v) + dN(N, v) ≤ 0,

dN({1, 2}, v) + dN({2, 3}, v) + dN(N, v) ≤ 0,

dN({1, 3}, v) + dN({2, 3}, v) + dN(N, v) ≤ 0, (6)

dN({1, 3}, v) + dN({2, 3}, v) ≤ 0,

dN({1, 2}, v) + dN({2, 3}, v) ≤ 0,

dN({1, 2}, v) + dN({1, 3}, v) ≤ 0.

From Theorem 2, we have

dN(N, v) = −v({1, 2})
3

− v({1, 3})
3

− v({2, 3})
3

+
v(N)

3
. (7)

Since (N, v) is balanced, from the Bondareva-Shapley theorem, we have

−v({1, 2})− v({1, 3})− v({2, 3}) + 2v(N) ≤ 0.

Since v(N) ≥ 0 from the assumption, we have

−v({1, 2})− v({1, 3})− v({2, 3}) + v(N) ≤ 0,

which implies dN(N, v) ≤ 0 from equation (7). As a result, the condition of
(10) is equivalent to

dN({1, 3}, v) + dN({2, 3}, v) ≤ 0,

dN({1, 2}, v) + dN({2, 3}, v) ≤ 0, (8)

dN({1, 2}, v) + dN({1, 3}, v) ≤ 0.

From Theorem 2, we have

dN({1, 2}, v) = −v({1, 2})
6

+
v({1, 3})

3
+
v({2, 3})

3
− v(N)

3
, (9)

dN({1, 3}, v) =
v({1, 2})

3
− v({1, 3})

6
+
v({2, 3})

3
− v(N)

3
, (10)

dN({2, 3}, v) =
v({1, 2})

3
+
v({1, 3})

3
− v({2, 3})

6
− v(N)

3
. (11)

By substituting these equations into the condition (8), we get the result. �

Corollary 1 states that the necessary and sufficient condition can be checked
by comparing the following two values: one is the sum of player i’s marginal
contribution to {i, j}, {i, k}, and the other is 4 times player i’s marginal
contribution to the grand coalition, where i, j, k ∈ N, i ̸= j ̸= k.
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Remark 1 In the setting of Corollary 1, the coefficients of singleton coali-
tions can be calculated as follows:

dN({1}, v) =
v({1, 2})

6
+
v({1, 3})

6
− v({2, 3})

3
+
v(N)

3
,

dN({2}, v) =
v({1, 2})

6
− v({1, 3})

3
+
v({2, 3})

6
+
v(N)

3
,

dN({3}, v) = −v({1, 2})
3

+
v({1, 3})

6
+
v({2, 3})

6
+
v(N)

3
.

Moreover, we have

Q̄NdN,v =



1001101
0101011
0010111
1100110
1011010
0111100
1110000





v({1,2})
6

+ v({1,3})
6

− v({2,3})
3

+ v(N)
3

v({1,2})
6

− v({1,3})
3

+ v({2,3})
6

+ v(N)
3

−v({1,2})
3

+ v({1,3})
6

+ v({2,3})
6

+ v(N)
3

−v({1,2})
6

+ v({1,3})
3

+ v({2,3})
3

− v(N)
3

v({1,2})
3

− v({1,3})
6

+ v({2,3})
3

− v(N)
3

v({1,2})
3

+ v({1,3})
3

− v({2,3})
6

− v(N)
3

−v({1,2})
3

− v({1,3})
3

− v({2,3})
3

+ v(N)
3


=



0
0
0

v({1, 2})
v({1, 3})
v({2, 3})
v(N)


.

which is equal to the original game.

Remark 2 As Shapley (1971) proved, any convex game belongs to ΓSC . We
can prove this theorem by using Theorem 4. In other words, we can prove
the following proposition without appealing to the Shapley’s theorem.

Proposition 1 Let (N, v) be a convex game. Then,

vShN (S) ≤ 0,

for all S ⊆ N .

The proof needs two lemmas.

Lemma 1 (Lemma 7 of Yokote, Funaki and Kamijo (2013)) Let (N, v),
n ≥ 2 be a game and let j ∈ N . Then, we have

dN\{j}(S, v) = dN(S, v) + dN(S ∪ {j}, v),

for all S ⊆ N\{j}, S ̸= ∅.

And the following lemma was proved by Mas-Colell, Whinston and Green
(1995).4

4See Proposition 18.AA.1 on page 683.
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Lemma 2 Let (N, v) be a convex game. Then, we have

ϕi(S, v) ≤ ϕi(T, v),

for all S ⊂ T ⊆ N,S ̸= ∅, and for all i ∈ S.

We skip the precise proof since it is a bit cumbersome and the result itself is
already known.

Up to now, we focused on games where the Shapley value belongs to the
Core. Here, we change our perspective. Consider the game (N, v) such that
ϕ(N, v) /∈ C(N, v) (it also includes the case C(N, v) = ∅). If we increase the
worth of the grand coalition alone, when will the Shapley value first belong
to the Core? We give a theorem to answer this question.

For any game (N, v) ∈ Γ, we define three additional notations. First, let
M(N, v) :=max{e

(
S, ϕ(N, v)

)
: S ∈ 2N\({N}∪∅)}. M(N, v) is the maximal

excess with respect to the Shapley value. Second, let η(N, v) := |Se|, where
e(Se, ϕ(N, v)) = M(N, v) and |Se| ≤ |T | for all T such that e(T, ϕ(N, v)) =
M(N, v). η(N, v) is the smallest cardinality of a coalition whose excess with
respect to the Shapley value is maximum.

Theorem 5 Let (N, v) ∈ Γ be a game such that ϕ(N, v) /∈ C(N, v). Then,

min
{
λ ∈ R : ϕ(N, v + λuN) ∈ C

(
N, v + λuN

)}
=
nM(N, v)

η(N, v)
.

Proof. The dividend of (N, λuN) is given as follows:

D(S, λuN) =

{
λ if S = N,

0 otherwise.

From Theorem 2,

dN(S, λuN) = (−1)|S|−1λ

n
, (12)

for all S ⊆ N,S ̸= ∅. Let us fix S ⊆ N,S ̸= ∅ and calculate (λuN)
Sh
N (S), S ⊆

N,S ̸= ∅. We need to add all dN(T, v), T ⊆ N such that |T ∩S| = 1, |T | ≥ 2.
Choosing T is equivalent to choosing i ∈ S and R ⊆ N\S,R ̸= ∅, since we
can express T = {i} ∪R. Taking this view into consideration, together with
equation (11), we have

(λuN)
Sh
N (S) =

λ|S|
n

n−|S|∑
k=1

(−1)k
(
n− |S|
k

)
= −λ|S|

n
,

12



for all S ⊆ N,S ̸= ∅, where the second equality holds from the binomial
theorem.

We prove a lemma.

Lemma 3 For any (N, v), (N,w) ∈ Γ, α, β ∈ R, we have (αv + βw)ShN =
αvShN + βwSh

N .

Proof. For any S ⊆ N,S ̸= ∅, from linearity of the Shapley value, we have

αvShN (S) + βwSh
N (S) = α

{
v(S)−

∑
i∈S

ϕi(N, v)
}
+ β

{
w(S)−

∑
i∈S

ϕi(N,w)
}

= (αv + βw)(S)−
∑
i∈S

ϕi(N,αv + βw)

= (αv + βw)ShN (S),

which proves the desired property. �

From this lemma, we have

(v + λuN)
Sh
N (S) = vShN (S) + (λuN)

Sh
N (S) = vShN (S)− λ|S|

n
,

for all S ⊆ N,S ̸= ∅. Since ϕ(N, v) /∈ C(N, v), from Theorem 4, there exists
S ⊆ N,S ̸= ∅ such that vShN (S) > 0. We need to reduce the worth of all such
coalitions until vShN (S) ≤ 0. The smaller the size of a coalition is, the harder
it is to reduce the worth of the coalition. Hence, among coalitions with the
largest worth, the worth of coalition with the smallest cardinality must be
equal to 0. Since vShN (S) is the excess of S ⊆ N,S ̸= ∅ with respect to the
Shapley value, the largest worth is equal to M(N, vShN ). It follows that, we
must have

λη(N, vShN )

n
=M(N, vShN ),

λ =
nM(N, vShN )

η(N, vShN )
=
nM(N, v)

η(N, v)
,

where the last equality holds since M(N, v) and η(N, v) are independent
from strategically equivalent transformation. In this case, the Shapley value
belongs to the Core, and the value nM(N,v)

η(N,v)
is obviously the minimum value

as the statement requires.
�
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Let us emphasize the importance of this theorem. Consider a social planner
who is trying to implement the Shapley value as the distribution rule of
resources in a society. Suppose also that the social planner could notice that
the Shapley value does not belong to the Core. Then, the natural consequence
of implementing the value is that some coalitions will deviate from the society
and enjoy their own worths of coalitions. In order for the social planner to
avoid this consequence, he needs to increase the total resources and widen
the Core, but how many? Theorem 5 can be used to answer this question.

Corollary 2 Let (N, v), N = {1, 2, 3}, be a 0-normalized game which satis-
fies v(N) ≥ 0 and v({1, 2}) ≥ v({1, 3}) ≥ v({2, 3}). If

v({1, 3}) + v({2, 3}) > 4(v(N)− v({1, 2})),

then ϕ(N, v) /∈ C(N, v). Moreover,

Case 1 If v({1, 2}) + v({1, 3}) + v({2, 3}) > v(N), then

min
{
λ ∈ R : ϕ(N, v + λuN) ∈ C

(
N, v + λuN

)}
= v({1, 2}) + v({1, 3})

4
+
v({2, 3})

4
− v(N).

Case 2 If v({1, 2}) + v({1, 3}) + v({2, 3}) ≤ v(N), then

min
{
λ ∈ R : ϕ(N, v + λuN) ∈ C

(
N, v + λuN

)}
= v({1, 2})− v({1, 3})

2
− v({2, 3})

2
− v(N).

Proof. We first show that if ϕ(N, v) ∈ C(N, v), then v({1, 3}) + v({2, 3}) ≤
4(v(N)− v({1, 2})). Since (N, v) is balanced and v(N) ≥ 0, from Corollary
1, if ϕ(N, v) ∈ C(N, v), then we have

v({1, 2}) + v({1, 3}) + 4v({2, 3}) ≤ 4v(N),

v({1, 2}) + v({2, 3}) + 4v({1, 3}) ≤ 4v(N),

v({1, 3}) + v({2, 3}) + 4v({1, 2}) ≤ 4v(N).

which implies

v({1, 2}) + v({1, 3}) + v({2, 3}) + max{3v({1, 2}, 3v({1, 3}), 3v({2, 3})} ≤ 4v(N).

Since v({1, 2}) ≥ v({1, 3}) ≥ v({2, 3}), we must have

v({1, 3}) + v({2, 3}) + 4v({1, 2}) ≤ 4v(N).

14



Note that v({1, 2}) ≥ v({1, 3}) ≥ v({2, 3}) implies the following inequality.

v({1, 2}) + v({1, 3}) ≥ v({1, 2}) + v({2, 3}) ≥ v({1, 3}) + v({2, 3}),
2v({1, 2}) + 2v({1, 3}) + v({2, 3})

≥2v({1, 2}) + v({1, 3}) + 2v({2, 3})
≥v({1, 2}) + 2v({1, 3}) + 2v({2, 3}).

Together with −2v({2, 3}) ≥ −2v({1, 3}) ≥ −2v({1, 2}), we have

2v({1, 2}) + 2v({1, 3})− v({2, 3})
≥2v({1, 2})− v({1, 3}) + 2v({2, 3})
≥− v({1, 2}) + 2v({1, 3}) + 2v({2, 3}).

From equations (9) to (11), we have

dN({2, 3}, v) ≥ dN({1, 3}, v) ≥ dN({1, 2}, v). (13)

In order to calculate excesses, we need to calculate the worths of coalitions
of (N, vShN ).

vShN ({1}) = dN({1, 2}, v) + dN({1, 3}, v) + dN(N, v), (14)

vShN ({2}) = dN({1, 2}, v) + dN({2, 3}, v) + dN(N, v), (15)

vShN ({3}) = dN({1, 3}, v) + dN({2, 3}, v) + dN(N, v), (16)

vShN ({1, 2}) = dN({1, 3}, v) + dN({2, 3}, v), (17)

vShN ({1, 3}) = dN({1, 2}, v) + dN({2, 3}, v), (18)

vShN ({2, 3}) = dN({1, 2}, v) + dN({1, 3}, v), (19)

vShN (N) = 0.

From equation (13), we have

vShN ({1, 2}) ≥ vShN ({1, 3}) ≥ vShN ({2, 3}), (20)

vShN ({3}) ≥ vShN ({2}) ≥ vShN ({1}). (21)

Now, suppose that Case 1 is satisfied. Then, −v({1, 2})−v({1, 3})−v({2, 3})+
v(N) < 0. Together with equation (7), we have dN(N, v) < 0. Equations
(14) to (19) imply that the

M(N, v) = vShN ({1, 2}), η(N, v) = 2.
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From equations (10) and (11), the following equality holds.5

vShN ({1, 2}) = 2v({1, 2})
3

+
v({1, 3})

6
+
v({2, 3})

6
− 2v(N)

3
.

Together with Theorem 5, the condition of the statement can be obtained.
Suppose that Case 2 is satisfied. Then, by following the same discussion,

we have dN(N, v) ≥ 0. It follows that

M(N, v) = vShN ({3}), η(N, v) = 1.

From equations (7), (10), (11), the following equality holds.6

vShN ({3}) = v({1, 2})
3

− v({1, 3})
6

− v({2, 3})
6

− v(N)

3
.

Together with Theorem 5, the condition of the statement can be obtained.

4.2 The Shapley value and the prenucleolus

We first give the necessary and sufficient condition under which the Shapley
value coincides with the prenucleolus. The proof is obvious from Theorem 3
and Kohlberg’s (1971) theorem.

Theorem 6 Let (N, v) be a game. Then, ϕ(N, v) = PN(N, v) if and only
if for any α ∈ R, {S ⊆ N,S ̸= ∅ : vShN (S) ≥ α} ̸= ∅ implies that the family
of coalitions is balanced.

By using this theorem, we precisely characterize the coincidence of the two
values in the case of 0-normalized 3-person game.

Corollary 3 Let (N, v), N = {1, 2, 3}, be a 0-normalized game. Then, ϕ(N, v) =
PN(N, v) if and only if one of the following two conditions holds.

Condition 1: v({1, 2}) = v({1, 3}) = v({2, 3})
Condition 2: v({1, 2}) + v({1, 3}) + v({2, 3}) = v(N).

5Note that under the condition v({1, 3})+v({2, 3}) > 4(v(N)−v({1, 2}), vSh
N ({1, 2}) >

0. This condition must hold since otherwise the maximum excess is no greater than 0,
which implies that the Shapley value belongs to the Core.

6Since vSh
N ({1, 2}) > 0 and dN (N, v) ≥ 0, we also have vSh

N ({3}) = vSh
N ({1, 2}) +

dN (N, v) > 0.
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Proof. If Part: Under Condition 1, the game is symmetric, so the coinci-
dence is obvious.7

Suppose that Condition 2 holds. Then, the following property holds.

v({1})− v(∅) + v(N)− v({2, 3}) = v({1, 2}) + v({1, 3}),
v({1, 2})− v({2}) + v({1, 3})− v({3}) = v({1, 2}) + v({1, 3}).

Namely, for any coalition S such that 1 /∈ S, the sum of marginal contribu-
tions of player 1 to coalition S and to coalition N\(S∪{1}) is the same. The
same condition holds for players 2 and 3. This property is known as the PS
property, introduced by Kar, Mitra and Mutuswami (2009). As they proved,
under PS property, the Shapley value and the prenucleolus coincide.

Only If Part: Suppose not. Then, both conditions 1 and 2 do not hold.
Assume, without loss of generality, that v({1, 2}) ≥ v({1, 3}) ≥ v({2, 3}).
Since Condition 1 does not hold, we have v({1, 2}) > v({1, 3}) ≥ v({2, 3})
or v({1, 2}) = v({1, 3}) > v({2, 3}).

First, suppose that v({1, 2}) > v({1, 3}) ≥ v({2, 3}). Then, we have

−2v({2, 3}) ≥ −2v({1, 3}) > −2v({1, 2}). (22)

We also have

v({1, 2}) + v({1, 3}) ≥ v({1, 2}) + v({2, 3}) > v({1, 3}) + v({2, 3}),
2v({1, 2}) + 2v({1, 3}) + v({2, 3})

≥2v({1, 2}) + v({1, 3}) + 2v({2, 3})
>v({1, 2}) + 2v({1, 3}) + 2v({2, 3}). (23)

The addition of equations (22) and (23) implies

2v({1, 2}) + 2v({1, 3})− v({2, 3})
≥2v({1, 2})− v({1, 3}) + 2v({2, 3})
>− v({1, 2}) + 2v({1, 3}) + 2v({2, 3}).

By dividing by 6, together with equations (9) to (11), we have

dN({2, 3}) ≥ dN({1, 3}) > dN({1, 2}).

7Note that both the Shapley value and the prenucleolus satisfy Equal Treatment Prop-
erty, which requires symmetric players to obtain the same payoff.
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It follows that

dN({1, 3}) + dN({2, 3}) > dN({1, 2}) + dN({2, 3}) ≥ dN({1, 2}) + dN({1, 3}).

From equations (14) to (19), we have

vShN ({1, 2}) > vShN ({1, 3}) ≥ vShN ({2, 3}),
vShN ({3}) > vShN ({2}) ≥ vShN ({1}).

Since Condition 2 does not hold, v({1, 2}) + v({1, 3}) + v({2, 3}) ̸= v(N).
Suppose that v({1, 2}) + v({1, 3}) + v({2, 3}) > v(N). Then, we have

−v({1, 2})− v({1, 3})− v({2, 3}) + v(N) < 0,

which implies, together with equation (7), dN(N, v) < 0. In this case,

{S ⊆ N,S ̸= ∅ : vShN (S) ≥ vShN ({1, 2})} = {1, 2},

which contradicts Theorem 6. If we assume that v({1, 2}) + v({1, 3}) +
v({2, 3}) < v(N), the same contradiction can be obtained.

Next, suppose that v({1, 2}) = v({1, 3}) > v({2, 3}). Then, by following
the same calculation, we have

vShN ({1, 2}) = vShN ({1, 3}) > vShN ({2, 3}),
vShN ({3}) = vShN ({2}) > vShN ({1}).

If we assume v({1, 2}) + v({1, 3}) + v({2, 3}) > v(N), we have

{S ⊆ N,S ̸= ∅ : vShN (S) ≥ vShN ({1, 2})} =
{
{1, 2}, {1, 3}

}
,

If we assume v({1, 2}) + v({1, 3}) + v({2, 3}) < v(N), we have

{S ⊆ N,S ̸= ∅ : vShN (S) ≥ vShN ({2})} =
{
{2}, {3}

}
.

Both results are contradictions. �

Corollary 3 states that the coincidence region for 3-person game is exactly
equal to the union of the set of all symmetric games, and the set of all games
which satisfy PS property.

Remark 3 We show an interesting relationship between the Shapley value
and the prenucleolus in the linear basis. The following lemma shows that the
the Shapley value prescribes 0 to games ūS, S ⊆ N, |S| ≥ 2.
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Lemma 4 (Lemma 5 of Yokote, Funaki and Kamijo (2013)) Let N ,
n ≥ 2 be a set of players. Then, we have ϕ(ūS) = 0 for all S ⊆ N, |S| ≥ 2.

The following result was proved by Chang and Tseng (2011).

Lemma 5 (Corollary 4 (iii) of Chang and Tseng (2011)) Let (N, v) ∈
Γ be a simple game. Then, ϕ(N, v) = 0 implies that the family of coalitions
{S ⊆ N : v(S) = 1} is balanced.

From Lemma 5, for any α ∈ R, {T ⊆ N, T ̸= ∅ : ūS(T ) ≥ α} ̸= ∅ implies that
the family of coalitions is balanced. Then, from Kohlberg’s (1971) theorem,
we have PN(N, ūS) = 0 for all S such that |S| ≥ 2. This result shows
that the Shapley value coincides with the prenucleolus in ūS, S ⊆ N,S ̸= ∅.
Namely, when we express a game by the linear combination of ūS, the two
values coincide in each games. The difference between them originates from
the difference of the way to respond to the addition of games.

Remark 4 Consider the following set of games (ũS)S⊆N,S ̸=∅ introduced by
Dragan (2012).

ũS = uS if |S| = 1,

ũS = uS −
∑
i∈S

ϕj(uS)u{j} if |S| ≥ 2.

Even if we use this set, the Shapley value appears in the coefficients and the
coefficients can be calculated by using the dividend. However, the advantage
of using our new linear basis is that we can deal with the relationship between
the Shapley value and the prenucleolus more effectively, as we saw in the proof
of Corollary 2. Since our linear basis consists of simple games, we can check
balancedness of coalitions more easily.

Remark 5 Although Theorem 6 gives necessary and sufficient condition,
we can also give a sufficient condition which is easier to calculate. The
condition clarifies a convex cone where the Shapley value coincides with the
prenucleolus.

Proposition 2 Let ΓPS ⊂ Γ denote the set of all games (N, v) ∈ Γ, n ≥ 2
which satisfy the following two properties:

1 dN(S, v) = dN(T, v) := a for all S, T ⊆ N such that |S| = |T | = 2.

2 vShN (S) ≤ (n− 1)a for all S ⊆ N,S ̸= ∅.
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Then, we have ϕ(N, v) = PN(N, v) for all v ∈ ΓN
PS. Moreover, ΓN

PS is a
convex cone.

We can prove this corollary by using the following proposition.

Proposition 3 (Suzuki and Nakayama (1976)) Let (N, v) be a game.
Then, PN(N, v) = ENSC(N, v) if

v(S)−
(∑

i∈S

mi(N, v) + |S|b(N, v)
)
≤ b(N, v),

for all S ⊆ N,S ̸= ∅.

Since the proof is a bit cumbersome, we skip it.

5 Concluding Remarks

In Theorem 2, we showed that the coefficients of ūS in a linear combination
can be calculated by using the dividend of the Shapley value. However, there
are two other ways to calculates the coefficients. First way uses the potential
function introduced by Hart and Mas-Colell (1989). Second way uses the
direct calculation from a game. Since the calculation by using the dividend
is the easiest way, we listed the theorem only. For other ways, see Yokote,
Funaki and Kamijo (2013).
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