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Abstract

In this paper, we investigate a new linear basis of the set of TU
cooperative games. As was the case of unanimity games, the value
of each game can be uniquely determined by using Efficiency, Equal
Treatment Property and Null Player Property. Moreover, the linear
basis induces the null space of the Shapley value. We also show that
when we express a game by a linear combination of the linear basis,
the Shapley value appears in the coefficients. The answer to the in-
verse problem of the Shapley value is given as well. Moreover, it will
be clear that the coefficients can be interpreted to express a coopera-
tive surplus regarding the Shapely value.

JEL classification: C71
Keywords: Cooperative games; Shapley value; Linear basis; Null space;
Inverse problem

1 Introduction

The purpose of this paper is to investigate a new linear basis of the set of
TU cooperative games.1 The most famous linear basis is unanimity games,
which were first introduced by Shapley (1953) in the proof of axiomatization.
Unanimity games were useful in that the value of each game can be uniquely
determined by using the following three axioms: Efficiency, Equal Treatment
Property and Null Player Property. Because of this property, unanimity
games have widely been used in the proof of axiomatization of the Shapley

1Although the linear basis was previously used in the proof of axiomatization of the
weighted Shapley value by Yokote (2013), the basis itself was not discussed in detail.
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value, especially in the case that the number of players is fixed throughout
the proof. See, for example, Young (1985), Chun (1989) or van den Brink
(2001).

Our new linear basis also satisfies this axiomatic property. Namely, each
game in the linear basis can be uniquely determined by the three axioms.
The difference with unanimity games is that our new linear basis contains
games which span the null space of the Shapley value; the subspace in the set
of all games where the Shapley value prescribes 0 vector to each game. Some
previous researches have investigated the null space of the Shapley value. For
instance, Kleinberg and Weiss (1985) characterized the null space by a direct-
sum decomposition of the space. In their characterization of the null space,
however, what games actually span the null space was unclear. Another
approach was taken by Dragan, Potters and Tijs (1989). By focusing on the
potential of the Shapley value, introduced by Hart and Mas-Colell (1989),
they clearly defined the games which span the null space of the Shapley value.
However, the value of each game in their linear basis cannot be uniquely
determined only by using Efficiency, Equal Treatment Property and Null
Player Property.

The difference between the previous ones and our new linear basis will
be clearer from the following two properties. First, when we express a game
by a linear combination of the linear basis, the coefficients can be calculated
by following the same calculation of the Shapley value. In particular, the
Shapley value appears in the coefficients. Second, the coefficients express a
cooperative surplus of the Shapley value; let us explain this property more
precisely. Consider a game and the Shapley value of player i. If some play-
ers outside of the game cooperate and the original game changes, then the
Shapley value of player i will change. This change can be interpreted as the
surplus of payoff for player i induced by the cooperation of players in N\S.
It will be clear that the change can be expressed by using the coefficients.

We also deal with the inverse problem, under which we characterize the
set of games where the Shapley value is equal to a fixed vector. In solving
the inverse problem, the linear basis players an important role. For other
approaches to the problem, see Dragan (2005) and Dragan (2012).

This paper is organized as follows. Section 2 contains notations and
definitions. Section 3 gives the definition of the new linear basis of the set
of games. We show three ways to calculate the coefficients and prove the
coincidence between the Shapley value and coefficients. In Section 4, we
show that the subspace spanned by some games in the linear basis precisely
coincides with the null space of the Shapley value. This result is applied
to the inverse problem. In Section 5, we discuss the interpretation of the
coefficients, and show that the coefficients express the cooperative surplus.
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Section 6 gives concluding remarks.

2 Notations and Definitions

For any two sets A and B, A ⊂ B means that A is a proper subset of B.
A ⊆ B means that A ⊂ B or A = B. |A| denote the cardinality of A.
Let N ⊂ N be a finite set of players, and let S ⊆ N be a coalition of N .
We define |N | = n, and we restrict our attention to games with n ≥ 2. A
characteristic function v : 2N → R assigns a real number to each coalition
of N , and satisfies v(∅) = 0. v(S) can be considered to be the worth of a
coalition. The pair (N, v) is called a game, and the set of all games is denoted
as Γ. The set of all games with player set N is denoted as ΓN . For notational
convenience, we write v instead of (N, v) if the set of players is clear. For
any (N, v) ∈ Γ, let (S, v), S ⊆ N,S ̸= ∅ denote the restriction of (N, v) on
S. A game v ∈ ΓN is called a null game if v(S) = 0 for all S ⊆ N , and
denoted as v0. A game v ∈ ΓN is called inessential if v(S) =

∑
i∈S v({i}) for

all S ⊆ N,S ̸= ∅. A game v ∈ ΓN is called 0-normalized if v({i}) = 0 for all
i ∈ N .

The Shapley value, which was first introduced by Shapley (1953), assigns
a n-dimensional vector to each game v ∈ ΓN as follows:

ϕi(v) =
∑

S⊆N :i∈S

(n− |S|)!(|S| − 1)!

n!

(
v(S)− v(S\{i})

)
for all i ∈ N.

We can interpret the set ΓN as R2n−1, since the worths of 2n − 1 coalitions
must be determined. And it is known that the Shapley value ϕ is a surjective
linear mapping from R2n−1 to Rn. So, the mapping ϕ has a null space, which
is given by

{v ∈ ΓN : ϕ(v) = 0}.

There are two real-valued functions defined on Γ which are useful to
calculate the Shapley value. First, the dividend of (N, v) ∈ Γ, introduced by
Harsanyi (1959), is defined as follows:

D(S, v) =

|S|−1∑
k=0

(−1)k
∑

T⊆S:|S|−|T |=k

v(T ), for all S ⊆ N,S ̸= ∅. (1)

Then, the following equality holds.∑
T⊆N :i∈T

1

|T |
D(T, v) = ϕi(N, v) for all i ∈ N.
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Second, Hart and Mas-Colell (1989) introduced the potential function on Γ,
which is defined recursively. For any (N, v) ∈ Γ,

P ({i}, v) = v({i}, v), for all i ∈ N.

P (S, v) =
1

|S|

(
v(S) +

∑
i∈S

P (S\{i}, v)
)
, for all S ⊆ N, 2 ≤ |S| ≤ n. (2)

Then, the following equality holds.

P (N, v)− P (N\{i}, v) = ϕi(N, v).

For any game v ∈ ΓN , we call i, j ∈ N , i ̸= j as substitutes if the
following condition is satisfied: v(S ∪ {i})− v(S) = v(S ∪ {j})− v(S) for all
S ⊆ N\{i, j}. For any game v ∈ ΓN , we call i ∈ N as a null player if the
following condition is satisfied: v(S ∪{i})− v(S) = 0 for all S ⊆ N\{i}. For
any game v ∈ ΓN and α ∈ R, β ∈ Rn, we define the game αv + β ∈ ΓN as
follows: (αv + β)(S) = αv(S) +

∑
i∈S βi for all S ⊆ N,S ̸= ∅.

We list the axioms satisfied by the Shapley value.

Efficiency
∑
i∈N

ϕi(v) = v(N) for all v ∈ ΓN .

Equal Treatment Property Take any v ∈ ΓN . If i, j ∈ N . i ̸= j are
substitutes, then ϕi(v) = ϕj(v).

Null Player Property Take any v ∈ ΓN . If i ∈ N is a null player, then
ϕi(v) = 0.

Linearity ϕ(λv + µw) = λϕ(v) + µϕ(w) for all v, w ∈ ΓN and λ, µ ∈ R.

Covariance ψ(αv + β) = αψ(v) + β for all v ∈ ΓN , α ∈ R and β ∈ Rn.

3 New linear basis

In this section, we give a new linear basis of ΓN . The most famous one is
the set of unanimity games, which were first introduced by Shapley (1953).
Unanimity game uS for some S ⊆ N,S ̸= ∅ is defined as follows:

uS(T ) =

{
1 if S ⊆ T,

0 otherwise.

When we express a game v ∈ ΓN by a linear combination of (uS)S⊆N,S ̸=∅, the
coefficient of uS is equal to the dividend, D(S, v).
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In this paper, we investigate the following set of games (ūS)S⊆N,S ̸=∅.

ūS(T ) =

{
1 if |T ∩ S| = 1,

0 otherwise.

The game ūS states that a coalition T gets 1 if and only if T intersect with
S only once. Let us interpret and compare the above two games. First, take
any game v ∈ ΓN and coalition S ⊆ N,S ̸= ∅, and suppose that the players
in N\S live in a region. There is a pie which yields a payoff of 1 in the region,
but the players in N\S cannot get the pie. The players in S are trying to
go to the region and get the pie. Then, unanimity game uS captures the
situation in which the players in S can get the pie if and only if all players in
S enter the region. On the other hand, the game ūS captures the situation
in which a player in S can get the pie if and only if he is the first player who
enters the region.

Example We give an example of (ūS)S⊆N,S ̸=∅ for 3-person game. Let N =
{1, 2, 3}.

ū{1} ū{2} ū{3} ū{12} ū{13} ū{23} ūN

{1}　
{2}　
{3}　
{1, 2}　
{1, 3}　
{2, 3}　
N 　

1
0
0
1
1
0
1

0
1
0
1
0
1
1

0
0
1
0
1
1
1

1
1
0
0
1
1
0

1
0
1
1
0
1
0

0
1
1
1
1
0
0

1
1
1
0
0
0
0

We give a theorem and a lemma which were proved by Yokote (2013).2

Theorem 1 (Lemma 3 of Yokote (2013)) The set of games (ūS)S⊆N,S ̸=∅
is a linear basis of ΓN .

This theorem was proved by using the following theorem which clarifies the
relationship between the two games.

Lemma 1 (Lemma 2 of Yokote (2013)) Let N be a set of players. Then,

2Although Yokote (2013) proved the weighted version of the linear basis, the results
here can be easily obtained by letting ω = (1, · · · , 1).
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we have

ūS =

|S|∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

kuT ,

for all S ⊆ N , S ̸= ∅.

From Theorem 1, any game v ∈ ΓN can be expressed by a linear combi-
nation of (ūS)S⊆N,S ̸=∅. Let dN(S, v) be the coefficient of ūS, S ⊆ N,S ̸= ∅ in
the linear combination. Namely,

v =
∑

S⊆N :S ̸=∅

dN(S, v)ūS.

We show three ways to calculate the coefficients. In Theorems 2 and 3, we
use the dividend, the potential, respectively. In Theorem 4, we show direct
calculation from v ∈ ΓN . The point is that, for any v ∈ ΓN , the Shpaley
value of player i coincides with dN({i}, v).

We first prove the theorem which uses the dividend.

Theorem 2 Let (N, v) be a game. Then, we have

dN(S, v) = (−1)|S|−1
∑

T :S⊆T

1

|T |
D(T, v),

for all S ⊆ N,S ̸= ∅. In particular,

dN({i}, v) =
∑

T⊆N :i∈T

1

|T |
D(T, v) = ϕi(N, v),

for all i ∈ N .

Proof. From the assumption, we have

v =
∑

S⊆N :S ̸=∅

dN(S, v)ūS

=
∑

S⊆N :S ̸=∅

dN(S, v)

|S|∑
k=1

(−1)k−1
∑

T⊆S:|T |=k

kuT

=
∑

S⊆N :S ̸=∅

∑
T :S⊆T

(−1)|S|−1dN(T, v)|S|uS,

v =
∑

S⊆N :S ̸=∅

D(S, v)

|S|
· |S|uS,

6



where the second equality holds from Lemma 1. From the uniqueness of
dN(S, v), S ⊆ N,S ̸= ∅, we have∑

T :S⊆T

(−1)|S|−1dN(T, v) =
D(S, v)

|S|
, (3)

for all S ⊆ N,S ̸= ∅.
Let us reexamine the statement of the theorem. First, let S = N . From

equation (3), we have (−1)n−1dN(N, v) =
D(N,v)

n
. Or, equivalently,

dN(N, v) = (−1)n−1D(N, v)

n
,

and the statement holds. Suppose that the statement holds for all S such
that |S| ≥ s+1 and we show the result for the case of |S| = s, 1 ≤ s ≤ n−1.
From equation (3),

D(S, v)

s
= (−1)s−1

∑
T :S⊆T

dN(T, v)

= (−1)s−1

n∑
k=s

∑
T :S⊆T,|T |=k

dN(T, v)

= (−1)s−1dN(S, v) + (−1)s−1

n∑
k=s+1

∑
T :S⊆T,|T |=k

dN(T, v)

= (−1)s−1dN(S, v) + (−1)s−1

n∑
k=s+1

∑
T :S⊆T,|T |=k

(−1)k−1
∑

R:T⊆R

D(R, v)

|R|
,

(4)

where the fourth equality holds from the induction hypothesis. Consider the
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second term of the right-hand side.3

(−1)s−1

n∑
k=s+1

∑
T :S⊆T,|T |=k

(−1)k−1
∑

R:T⊆R

D(R, v)

|R|

=(−1)1−s
∑

R:S⊂R

|R|−s∑
k=1

(
|R| − s
k

)
(−1)s+k−1D(R, v)

|R|

=
∑

R:S⊂R

|R|−s∑
k=1

(
|R| − s
k

)
(−1)k

D(R, v)

|R|

=−
∑

R:S⊂R

D(R, v)

|R|
,

where the third equality holds from the binomial theorem. By substituting
this equation into equation (4), and rearranging, we have

(−1)s−1dN(S, v) =
∑

R:S⊆R

D(R, v)

|R|
,

which completes the proof. �
Next, we prove the theorem which uses the potential.

Theorem 3 Let (N, v) be a game. Then, we have

dN(S, v) =
∑

T :N\S⊆T

(−1)|T∩S|−1P (T, v),

for all S ⊆ N,S ̸= ∅. In particular,

dN({i}, v) = P (N, v)− P (N\{i}) = ϕi(v),

for all i ∈ N .

In order to prove this theorem, we need three lemmas. First, let us introduce
the set of games ũS, S ⊆ N,S ̸= ∅.

ũS(T ) =


|S| if T = S,

−1 if T = S ∪ {j} for some j ∈ N\S,
0 otherwise.

3We explain the first equality below. In order for D(R,v)
|R| to be added, a coalition R′

such that R′ ⊃ S, R′ ⊆ R must be chosen. Such a coalition R′ is determined by choosing
k, 1 ≤ k ≤ |R\S|, players from R\S.
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This set of games was first introduced by Dragan, Potters and Tijs (1989).
Here, we use this set only for the purpose of calculating the coefficients.

Lemma 2 Let (N, v) be a game and suppose that v =
∑

S⊆N :S ̸=∅ β̃SũS for
some (βS)S⊆N,S ̸=∅. Then, we have

β̃S = P (S, v),

for all S ⊆ N,S ̸= ∅.

Proof. From the definition, β̃{i} = v({i}) = P ({i}, v). Suppose that the
statement holds for |S| = s − 1, and we prove the case of |S| = s, s ≥ 2.
First, from the definition, we have

v(S) = sβ̃S −
∑
i∈S

β̃S\{i}.

From the induction hypothesis,

v(S) = sβ̃S −
∑
i∈S

P (S\{i}, v).

Then, we have

β̃S =
1

s

(
v(S) +

∑
i∈S P (S\{i}, v)

)
= P (S, v),

as desired. �

Lemma 3 Let (N, v) be a game. Then, we have∑
T :S⊆T

ũT = |S|uS,

for all S ⊆ N,S ̸= ∅.

Proof. Take any S ⊆ N,S ̸= ∅ and fix. Let us calculate
∑

T :S⊆T ũT (R), R ⊆
N,R ̸= ∅. If S * R, the value is 0.4 If S ⊆ R, R gains |R| from ũR(R), but
R loses 1 by |R| − |S| times. Summing up, we have

∑
T :S⊆T

ũT (R) =

{
|R| − (|R| − |S|) = |S| if R ⊇ S,

0 otherwise,

which is equal to |S|uS. �
4From the definition of ũT , ũT (R) ̸= 0 only if R ⊇ T . Note that if R + S, then R + T

for all T such that T ⊇ S. It follows that
∑

T :S⊆T ũT (R) must be 0.
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Lemma 4 Let (N, v) be a game. Then, we have

D(S, v)

|S|
=

|S|−1∑
k=0

(−1)k
∑

T⊆S:|T |=|S|−k

P (T, v),

for all S ⊆ N,S ̸= ∅.

Proof. From Lemmas 2 and 3, we have∑
S⊆N :S ̸=∅

D(S, v)

|S|
∑

T :S⊆T

ũT =
∑

S⊆N :S ̸=∅

P (S, v)ũS,

∑
S⊆N :S ̸=∅

∑
T⊆S:T ̸=∅

D(T, v)

|T |
ũS =

∑
S⊆N :S ̸=∅

P (S, v)ũS.

From the uniqueness of the coefficients, we have∑
T⊆S:T ̸=∅

D(T, v)

|T |
= P (S, v), (5)

for all S ⊆ N,S ̸= ∅. Equivalently,
D(S, v)

|S|
+

∑
T⊂S:T ̸=∅

D(T, v)

|T |
= P (S, v). (6)

Let us reexamine the statement of Lemma 4. If |S| = 1, the proof is obvious
from equation (5). Suppose that the proof holds for |S| ≤ s−1, and we prove
the case of |S| = s, s ≥ 2. Then, from the induction hypothesis, equation (6)
reduces to

P (S, v) =
D(S, v)

s
+

∑
T⊂S:T ̸=∅

(∑|T |−1
k=0 (−1)k

∑
R⊆T :|R|=|T |−k P (R, v)

)
.

By rearranging, we have

D(S, v)

s
= P (S, v)−

∑
T⊂S:T ̸=∅

(∑|T |−1
k=0 (−1)k

∑
R⊆T :|R|=|T |−k P (R, v)

)
. (7)

Consider the second term of the right-hand side. Take any T ′ ⊂ S. Then
the coefficient of P (T ′, v) is given by5

−
s−|T ′|−1∑

k=0

(−1)k
(
s− |T ′|

k

)
.

5In order for P (T ′, v) to be added, a coalition T ′′ such that T ′′ ⊇ T ′, T ′′ ⊂ S is chosen
in the first summation

∑
T⊂S:T ̸=∅. Such a coalition T ′′ is determined by choosing k,

0 ≤ k ≤ s− |T ′| − 1, players from S\T ′, since T ′′ = T ′ ∪R for some R ⊂ S\T ′.
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From the binomial theorem, we have

0 = (1− 1)s−|T ′| =

s−|T ′|∑
k=0

(−1)k
(
s− |T ′|

k

)
,

−
s−|T ′|−1∑

k=0

(−1)k
(
s− |T ′|

k

)
= (−1)s−|T ′|.

As a result, equation (7) reduces to

D(S, v)

s
= P (S, v) +

∑
T⊂S:T ̸=∅

(−1)s−|T |P (T, v),

= P (S, v) +
s−1∑
k=1

(−1)k
∑

T⊂S:|T |=s−k

P (T, v),

=
s−1∑
k=0

(−1)k
∑

T⊆S:|T |=s−k

P (T, v),

as desired. �

Proof of the theorem. From Theorem 2 and Lemma 4, we have

dN(S, v) = (−1)|S|−1
∑

R:S⊆R

D(R, v)

|R|

= (−1)|S|−1
∑

R:S⊆R

|R|−1∑
k=0

(−1)k
∑

T⊆R:|T |=|R|−k

P (T, v), (8)

for all S ⊆ N,S ̸= ∅. Let us fix S ⊆ N,S ̸= ∅ and consider the right-hand
side of equation (8). Take any T ⊆ N, T ̸= ∅, and we calculate the coefficient
of P (T, v). It is given by6

(−1)|S|−1

|N\(S∪T )|∑
k=0

(
|N\(S ∪ T )|

k

)
(−1)|S\T |+k

=(−1)|T∩S|−1

|N\(S∪T )|∑
k=0

(
|N\(S ∪ T )|

k

)
(−1)k.

6Note that in order for P (T, v) to be added, a coalition R such that S ⊆ R, T ⊆ R
must be chosen. Namely, by choosing k players from N\(S ∪ T ), R is determined. For
such coalition R, we have |R\T | = |S\T |+ k.
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In the transformation above, note that (−1)|S|−1 · (−1)|S\T |+k is equal to
(−1)|S|−1·(−1)−|S\T |·(−1)k, and we get (−1)|T∩S|−1·(−1)k. From the binomial
theorem, P (T, v) = 0 for all T such that S ∪ T ̸= N . If S ∪ T = N ,
|N\(S ∪ T )| = 0. As a result, equation (8) reduces to

dN(S, v) =
∑

T :N\S⊆T

(−1)|T∩S|−1P (T, v),

for all S ⊆ N,S ̸= ∅. �

Finally, we show a direct calculation.

Theorem 4 Let (N, v) be a game. Then, we have

dN(S, v) = (−1)|S|−1
∑
R⊆N

(−1)|S\R| (n− |S ∪R|)!(|S ∪R| − 1)!

n!
v(R),

for all S ⊆ N,S ̸= ∅. In particular,

dN({i}, v) =
∑

S⊆N :i∈S

(n− |S|)!(|S| − 1)!

n!

(
v(S)− v(S\{i})

)
= ϕi(N, v),

for all i ∈ N .

In the calculation, we follow the way proposed by Owen (1972).
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Proof. Take any v ∈ ΓN and S ⊆ N,S ̸= ∅. From Theorem 2,

(−1)|S|−1dN(S, v)

=
∑

T :S⊆T

1

|T |

|T |−1∑
k=0

(−1)k
∑

R⊆T :|T |−|R|=k

v(R)

=
∑
R⊆N

|N\(R∪S)|∑
k=0

(
|N\(R ∪ S)|

k

)
(−1)k+|S\R| 1

k + |R ∪ S|
v(R)

=
∑
R⊆N

|N\(R∪S)|∑
k=0

(−1)k+|S\R|
(
|N\(R ∪ S)|

k

)
v(R)

∫ 1

0

xk+|R∪S|−1dx

=
∑
R⊆N

∫ 1

0

|N\(R∪S)|∑
k=0

(−1)k+|S\R|
(
|N\(R ∪ S)|

k

)
v(R)xk+|R∪S|−1dx

=
∑
R⊆N

∫ 1

0

(−1)|S\R|x|R∪S|−1v(R)

|N\(R∪S)|∑
k=0

(
|N\(R ∪ S)|

k

)
(−x)kdx

=
∑
R⊆N

(−1)|S\R|v(R)

∫ 1

0

x|R∪S|−1(1− x)|N\(R∪S)|dx

=
∑
R⊆N

(−1)|S\R|v(R)
([

x|R∪S|

|R∪S| (1− x)|N\(R∪S)|
]1
0

+
|N\(R ∪ S)|

|R ∪ S|

∫ 1

0

x|R∪S|(1− x)|N\(R∪S)|−1dx
)

=
∑
R⊆N

(−1)|S\R|v(R)

( |N | − |R ∪ S|
|R ∪ S|

· |N | − |R ∪ S| − 1

|R ∪ S|+ 1
· · · · · 1

n− 1

∫ 1

0

xn−1dx
)

=
∑
R⊆N

(−1)|S\R| (n− |R ∪ S|)!(|R ∪ S| − 1)!

n!
v(R).

�

Before we finish this section, we summarize the results. The following figure
shows how the values are correlated.
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dN(S, v)

v

D(S, v) P (S, v)

a b c

d e

f

g

a : Theorem 2 b : Theorem 4 c : Theorem 3

d : Equation (1) e : Equation (2) f : Equation (5)

g : Lemma 4

In the usual setting of TU cooperative games, our main interest is to calcu-
late the Shapley value of some game v ∈ ΓN . The Shapley value, ϕi(v), is
equal to dN({i}, v), which appears in the circle placed on the top. So, this
figure generalizes the process of calculation, from the Shapley value to the
coefficients.

Moreover, we can calculate the worths of coalitions of game v ∈ ΓN given
the coefficients dN(S, v). Namely, the inverse arrow of b can be obtained.7

v(S) =
∑

T⊆N :|T∩S|=1

dN(T, v), (9)

for all S ⊆ N,S ̸= ∅. It follows that if the value of one circle is obtained,
then all other values can also be obtained.

4 Inverse Problem

In this section, we focus on the inverse problem of the Shapley value. For a
n-dimensional vector x, we characterize the set of games where the Shapley

7Note that only the games ūT , T ⊆ N , T ̸= ∅, such that |T ∩S| = 1 gives 1 to coalition
S in the linear combination.
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value is exactly x. By solving this problem, we can clarify the set of games
where the Shapley value prescribes the same vector. The answer also tells
us the invariance of the Shapley value against the change of the structure of
games.

Before we tackle with the inverse problem, we first prove the important
property of the linear basis. As we saw, the coefficients of games {ū{i} : i ∈
N} are exactly the Shapley value. On the other hand, other games in the
linear basis span the null space of the Shapley value.

Theorem 5 The subspace spanned by ūS, S ⊆ N, |S| ≥ 2 is the null space
of ϕ.

We fist prove a lemma.

Lemma 5 For any set of players N , we have ϕ(ūS) = 0 for all S ⊆ N, |S| ≥
2.

Proof. Take any ūS, |S| ≥ 2. If |S| = n, all players are substitutes. From
Equal Treatment Property, ϕi(v) = ϕj(v) for all i, j ∈ N . Combined with
Efficiency, we have ϕ(v) = 0.

Suppose that 2 ≤ |S| ≤ n − 1 and take any k ∈ N\S. Since T ∩ S =
(T ∪{k})∩S for all T ⊆ N\{k}, from the definition of ūS, k is a null player.
From Null Player Property, ϕk(v) = 0 for all k ∈ N\S. Consider i ∈ S.
Since all players in S are substitutes, from Equal Treatment Property, we
have ϕi(v) = ϕj(v) for all i, j ∈ S. Combined with Efficiency and the fact
that ϕk(v) = 0 for all k ∈ N\S, we have ϕ(v) = 0, which completes the
proof. �

Proof of the theorem. Since ϕ is a surjective linear mapping, we already
know that the dimension of the null space is 2n − 1 − n. As we saw in
Theorem 1, (ūS)S⊆N,|S|≥2 are linearly independent. Lemma 5 completes the
proof.

�

From Lemma 5 and Linearity, the change in the coefficients of ūS, |S| ≥ 2,
namely the change in dN(S, v), |S| ≥ 2, has nothing to do with the Shapley
value. In other words, we can change the value of dN(S, v), |S| ≥ 2 without
changing the Shapley value. This viewpoint is the key in the proof of the
next theorem.

Theorem 6 Let (N, v) be a game. Then, x ∈ Rn is the Shapley value of

15



(N, v) if and only if there exists (yS)S⊆N,|S|≥2 ∈ R2n−1−n such that

v(S) =
∑
i∈S

xi +
∑

T⊆N :|T |≥2,|T∩S|=1

yT ,

for all S ⊆ N,S ̸= ∅.

Proof. Only if part. Let yT = dN(T, v) for all T ⊆ N, |T | ≥ 2 and let
xi = ϕi(N, v) for all i ∈ N . Then, the equation in the statement holds for all
S ⊆ N,S ̸= ∅ from equation (9), which completes the proof.

If part. We first prove a lemma.

Lemma 6 Let ψ : ΓN → Rn be a solution function which satisfies Covari-
ance and Null Player Property. Let v ∈ ΓN be an inessential game. If
ψ(v) = 0, then v is a null game.

Proof. Consider the game v − β, β ∈ Rn, where βi = v({i}), i = 1, . . . , n.
Then, from the definition of inessential game, v − β is a null game. From
Null Player Property, we have

ψi(v − β) = 0,

for all i ∈ N . From Covariance,

0 = ψi(v − β) = ψi(v)− βi = −βi,

it follows that v({i}) = 0 for all i ∈ N . Namely, the game v is a null game.
�

Suppose that ϕ(N, v) = x̃ ̸= x. From Theorem 1, we can express v by a
linear combination of (ūS)S⊆N,S ̸=∅. Moreover from Theorem 2 (or 3, 4), the
coefficients of the first n games coincide with the Shapley value.

v =
∑
i∈N

x̃idN({i}, v) +
∑

T⊆N :|T |≥2

dN(T, v)ūT .

We define v′ := v+
∑

T⊆N :|T |≥2{yT − dN(T, v)}ūT . Then, from Lemma 5 and

Linearity, ϕ(v′) = x̃. The game v′ is given by

v′ =
∑
i∈N

x̃idN({i}, v) +
∑

T⊆N :|T |≥2

yT ūT .

Consider the worth of coalition in v′.

v′(S) =
∑
i∈S

x̃i +
∑

T⊆N :|T |≥2,|T∩S|=1

yT for all S ⊆ N,S ̸= ∅. (10)
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And we already know from the assumption that

v(S) =
∑
i∈S

xi +
∑

T⊆N :|T |≥2,|T∩S|=1

yT for all S ⊆ N,S ̸= ∅. (11)

Consider the game v − v′ ∈ ΓN . From equation (10) and (11), we have

(v − v′)(S) =
∑
i∈S

(xi − x̃i) for all S ⊆ N,S ̸= ∅.

Moreover, from Linearity, we have

ϕ(v − v′) = ϕ(v)− ϕ(v′) = x̃− x̃ = 0.

Since v − v′ is an inessential game, Lemma 6 implies that v − v′ is a null
game. In particular,

(v − v′)({i}) = xi − x̃i = 0 for all i ∈ N.

It follows that x = x̃, which shows the desired contradiction.
�

Example We give an example of the inverse problem for 3-person game.
Let N = {1, 2, 3}. The set of all games v such that ϕ(v) = x can be expressed
by using (yS)S⊆N,S ̸=∅ as follows.

v({1}) = x1 + y12 + y13 + yN ,

v({2}) = x2 + y12 + y23 + yN ,

v({3}) = x3 + y13 + y23 + yN ,

v({1, 2}) = x1 + x2 + y13 + y23,

v({1, 3}) = x1 + x3 + y12 + y23,

v({2, 3}) = x2 + x3 + y12 + y13,

v(N) = x1 + x2 + x3.

The set of all 0-normalized games v such that ϕ(v) = x can be expressed by
using y ∈ R as follows.

v({1, 2}) = x1 + x2 − x3 − y,

v({1, 3}) = x1 + x3 − x2 − y,

v({2, 3}) = x2 + x3 − x1 − y,

v({N}) = x1 + x2 + x3.
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Let us explain the equations above. First, each coalition S gets the sum
of amounts which players in S receive in x. After that, the value −y is
added. The change in y has nothing to do with the Shapley value x, since
all players are symmetric in the change and the worth of the grand coalition
never changes.

5 The Shapley value of subgames and Coop-

erative Surplus

In this section, we state the final property of the new linear basis. That is,
the coefficients express the cooperative surplus of the Shapley value. In order
to explain this property in detail, we need to prove the main theorem of this
section, and the proof needs two lemmas.

Let us remark the notation of this section. We write ϕ(N, v) instead of
ϕ(v) and write DN(S, v) instead of D(S, v), in order to explicitly refer to the
domain of a game v.

Lemma 7 Let (N, v) be a game and let j ∈ N . Then, we have

dN\{j}(S, v) = dN(S, v) + dN(S ∪ {j}, v),

for all S ⊆ N\{j}, S ̸= ∅.

Proof. Take any S ⊆ N\{j}, S ̸= ∅. From Theorem 2, we have

dN(S, v) = (−1)|S|−1
∑

T⊆N :S⊆T

1

|T |
DN(T, v)

= (−1)|S|−1
∑

T⊆N\{j}:S⊆T

1

|T |
DN(T, v)

+ (−1)|S|−1
∑

T⊆N :S∪{j}⊆T

1

|T |
DN(T, v),

dN(S ∪ {j}, v) = (−1)|S|
∑

T⊆N :S∪{j}⊆T

1

|T |
DN(T, v).

Since

(−1)|S|−1
∑

T⊆N :S∪{j}⊆T

1

|T |
DN(T, v) + (−1)|S|

∑
T⊆N :S∪{j}⊆T

1

|T |
DN(T, v) = 0,

18



we must have

dN(S, v) + dN(S ∪ {j}, v) = (−1)|S|−1
∑

T⊆N\{j}:S⊆T

1

|T |
DN(T, v).

From the definition of the dividend, we have DN(T, v) = DN\{j}(T, v) for all
T ⊆ N\{j}. By substituting this equation, we have

dN(S, v) + dN(S ∪ {j}, v) = (−1)|S|−1
∑

T⊆N\{j}:S⊆T

1

|T |
DN\{j}(T, v),

which is equal to dN\{j}(S, v) from Theorem 2. �

The following lemma is an extension of Lemma 7.

Lemma 8 Let (N, v) be a game and let T ⊂ N, T ̸= ∅. Then, we have

dN\T (S, v) =
∑
R∈2T

dN(S ∪R, v),

for all S ⊆ N\T, S ̸= ∅.

Proof. From Lemma 7, the statement holds if |T | = 1. Suppose that the
statement holds for all T such that |T | = k − 1, and we prove the case of
|T | = k, where 2 ≤ k ≤ n − 1. Take any S ⊆ N\T, S ̸= ∅, and any j ∈ T .
From Lemma 7, we have8

dN\T (S, v) = dN\(T\{j})(S, v) + dN\(T\{j})(S ∪ {j}, v)

=
∑

R∈2T\{j}

dN(S ∪R, v) +
∑

R∈2T\{j}

dN(S ∪R ∪ {j}, v)

=
∑
R∈2T

dN(S ∪R, v),

where the second equality holds from the induction hypothesis, which com-
pletes the proof. �

The main theorem of this section is given as follows. This theorem says that
we can calculate the Shapley value of any subgame by using the coefficients.
We skip the proof since it is obvious from Lemma 8 and the fact that the
Shapley value coincides with the coefficient.

8In the statement of Lemma 7, replace N with N\(T\{j}). Then, the next equation
can be obtained.
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Theorem 7 Let (N, v) be a game and let T ⊆ N, T ̸= ∅. Then, we have

ϕi(T, v) =
∑

R∈2N\T

dN({i} ∪R, v),

for all i ∈ T .

Now, we interpret the results of this section. First, we show that Lemma 7
induces the Balanced Contribution Property, introduced by Myerson (1980).
To see this, take any i, j ∈ N . From Lemma 7, we have

dN\{j}({i}, v) = dN({i}, v) + dN({i, j}, v),
dN\{i}({j}, v) = dN({j}, v) + dN({i, j}, v).

By applying the fact that the coefficients coincide with the Shapley value,
we have

ϕi(N\{j}, v) = ϕi(N, v) + dN({i, j}, v),
ϕj(N\{i}, v) = ϕj(N, v) + dN({i, j}, v).

It follows that

ϕi(N, v)− ϕi(N\{j}, v) = ϕj(N, v)− ϕj(N\{i}, v),

which is equivalent to the statement of Balanced Contribution Property. The
point is that the equal value, −dN({i, j}, v), appears in the coefficient.

Namely, Lemma 7 can be interpreted as a variation of Balanced Con-
tribution Property. We now extend the interpretation by using Theorem
7.

Let (N, v) be a game and take any coalition S ⊆ N,S ̸= ∅, any player
i ∈ S. Suppose that, at first, players in S were bargaining over the division of
v(S). The Shapley value was employed as a division rule, and i got ϕi(S, v).
Now assume that players in N\S merged into the bargaining. For player i,
the difference of the Shapley value, ϕi(S, v)− ϕi(N, v), can be interpreted as
the surplus by the cooperation of N\S. By using Theorem 7, the difference
can be rewritten as follows.

ϕi(N, v)− ϕi(S, v) = dN({i}, v)−
∑

R∈2N\S

dN({i} ∪R, v)

= −
∑

R∈2N\S :R ̸=∅

dN({i} ∪R, v).

It is intuitively natural to expect that the change in the payoff of i will
be affected by the relationship between i and coalitions in N\S. From the
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equation above, we can interpret that the coefficients, dN({i}∪R, v), measure
the relationship in a numerical way. The reason is that, if we measure the
values dN({i} ∪ R, v) by multiplying −1 and take the sum, then the total
change in the payoff can be obtained. In other words, the cooperative surplus
for player i can be calculated.

The results in this section are remarkable in that mathematically simple
values, coefficients, can not only calculate the Shapley value of all players of
all subgames, but also propose an important interpretation.

6 Concluding Remarks

We can extend the discussion in this paper to the weighted Shapley value.
For any positive weight ω ∈ Rn, ωi > 0, i = 1, · · ·n, let ūωS ∈ ΓN denote the
following game.

ūωS(T ) =

{
ωi, i ∈ S ∩ T if |S ∩ T | = 1,

0 otherwise.

Then, the following theorem holds.

Theorem 8 (Theorem 4 of Yokote (2013)) Let ω be any positive weight.
Then, the set of games {u{i} : i ∈ N}∪{ūωS : |S| ≥ 2} is a linear basis of ΓN .
Moreover, when we express a game by a linear combination of the linear ba-
sis, the coefficient of u{i} is equal to the weighted Shapley value with positive
weight ω of i ∈ N .

The point is that the weighted Shapley value with positive weight ω prescribes
0 vector to ūωS, S ⊆ N, |S| ≥ 2. As a result, the null space and the inverse
problem can be generalized to the case of the weighted Shapley value.
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